SAMPLE
PROGRAMME

LIST

100
1183
128
1272
148
150
160
iva
175
158
199
269
210
220
228

RUN

N0 NG Wh D

COUNT=TAPCNT

CPEN “0O", #1, "CRSA: TEST. DAT"
FOR A=t TO 10
FRINT#1,A;SQR(A2

HEXT

CLOSE #1

WIND COUNT

OPEN "1",#1,"CAS&: TEST. DAT"
PRINT :PRINT" A/ ", "SOR(AO"
IF EQF(1)> GOTO 228

INPUT#1,A:B
PRINT 6,8
G070 180
CLOSE #1
END
SORC(AY
1
1. 41421
1. 73285
2
2. 23687
2. 44949
2. 64575
2.82843
3
3. 16223

ClibPDF - www . fastio.com 3.78

H1-

T

ana

1Y)

ua

1V

i

s

L

CHAPTER 4
Functions

http://www.fastio.com/

Il

ABS

[Tel:/I'Y ABS(<numeric expression>)
FIETIeSal To return the absolute value of a numeric expression.

WY A=ABS(—1.6)

RIHVIGIE] ABS returns the absolute value of <numeric expression>.

TER®AN
booWododd

v
b d

=3 ASC

Eg—; HOIEVE ASC(<string>)
! - (YA To return the character code of a character.

A=ASC(“A")
E3

MAURLLEY ASC returns a numerical value that is the ASCIIl code of the first character of

‘; :a <string>. See APPENDIX F, “Character Code Table” for the relationship
‘ between characters and ASCII character codes.
' ,5 If <string> is null, an FC ("lllegal function call”) error is returned.

{See CHR$, and APPENDIX F, “Character Code Tabie”.)

ClibPD www fastio.com M a-1

http://www.fastio.com/

ATN ¥ CHRS$

HeiV/IAYl ATN(<numeric expression>) F :;S HelIYll CHR$(<numeric expression>)

[UiIe]d To return the arc tangent of a numeric expression. VLIS To return the character corresponding to a specified character code.

DI A=ATN(0.5) F""’S [WILRY AS=CHR$(&H41)

EIFNEGIET ATN returns the arc tangent of <numeric expression> in radians. The result v HEAMLGTE] CHRS$ returns the ASCII character whose code is the value of <numeric
of the operation is in the range —n/2 to @/2. Frvi expression>. If the value of <numeric expression> is not in the range of 0 to

255, an FC ("lllegal function call”) error occurs.

You may include real numbers in <numeric expression> but the fractional
portion of the real number must be rounded before using it as the value of
<numeric expression>.

P
w w

{See ASC, and APPENDIX F, “Character Code Table.”)

SETTT
W W W owou

CDBL

JOHIYM CDBL(<numeric expression>)
[M8LLIdO] To convert integers and single precision numbers into double precision
numbers.

D CVIHF A#=CDBL(B!/2)

CINT

[ROIMIUNEM CINT(<numeric expression>)
OO To convert single and double precision numbers into integers.
[DGVIIENY A% =CINT(B#/2)

3
W

m

CINT converts the value of <numeric expression> into an integer by

CDBL converts the value of <numeric expression> to a double precision rounding the fractional portion. If the value of <numeric expression> is not in
number. Only the type conversion is performed and there is no change in the the range of —32768 to 32767, an OV (*Overflow”) error occurs.
number of significant digits.

T
W W

(See CDBL, FIX, and INT.)

%

W

e
N

T

ClibPDF - www . fastio.com 4-2 43

http://www.fastio.com/

COS

[Jel:{%I:Wll COS (<numeric expression=>)

Fs

KON CSRLIN

IR To return the cosine of a numeric expression. (M)} To return the vertical position of the cursor on the virtual screen.
IOV Y A=CO0S(3.1415926/2) i r 3 [Ny Y=CSRLIN

HISURGIE] CSRLIN returns the value of the vertical position of the cursor on the virtual
screen. The value of the vertical position must be in the range of 0 to (number
of lines on the virtual screen —1).

EETE COS returns the cosine of <numeric expression> in radians.

w

(See POS.)

IR

-

rrrree

g

DATES$

AOLUILENN DATES [=MM/DD/YY]

VORI To set the current date in, and return the date kept by, the internal calendar
clock.

DEGVWIHNY PRINT DATES$

CSNG

CSNG(<numeric expression>) :

To convert integers and double precision numbers into single precision
numbers.

A!l=CSNG(B#)

DATES$ displays the date kept by the internal calendar clock in the HX-20.
Using this statement, you can set the date in the form of a string such as
MM/DD/YY (e.g., “08/15/82") where MM represents the month, DD
represents the day and YY represents the year.
The date is displayed in the same fogmat as that when it was input. Once you
set the correct current date with a DATES, you are not required to set it again,
as the clock in the HX-20 keeps track of the time and date.

CSNG converts the value of <numeric expression> into a single precision
number in 6 significant digits.
If the value of <numeric expression> is not in the range —1.70141 E+38 to
1.70141 E+38, an OV ("Overflow") error occurs.

IV VIRV UV RV VU R VU R VU R V U R 7 ¥}

(See CDBL and CINT.)

iy

(See DAY and TIMES$.)

IEREE

ClibPDF - www . fastio.com 4-4

http://www.fastio.com/

DAY

FORMAT
PURPOSE

EXAMPLE
REMARKS

DAY
To set the current day of the week in, and display the day of the week kept by,

the internal calendar clock.
PRINT DAY

In the HX-20, the day of the week is kept by the internal calendar clock by
integers 1 to 7 corresponding to the 7 days of the week. Using this
statement, you can set the current day of the week such as
DAY =7(Saturday). The day of the week is displayed by one of integers 1 to 7.
Once you set the correct current day of the week with a DAY, you are not
required to set it again.

(See DATE$ and TIMES.)

EOF

[ZS131ViIIYl EOF(<file number>)
(Vo] To return the end-of-file code.
[0\ YE] IF EOF(3) THEN CLOSE #1 ELSE GOTO 100

EIEEGTE The file specified by <file number> must have been opened for the input

ClibPD

www fastio.com

mode. EOF checks if the file specified by <file number> has reached its end.
EOF returns —1 (true) if the end of the file has been reached and returns O
(false) if not.

If the specified file is RS-232C port (“COMO: "), EOF returns —1 when the
buffer is empty and returns 0 when the buffer is not empty. The EOF function
always returns O (false) for the file assigned to the keyboard.

46

3

F,"‘S

TTTTTPTY

ol

T
L

i

il

TTRNT VRN TR T TR T}

TV

3

ERL/ERR

FORMAT
PURPOSE
EXAMPLE

REMARKS

ERL

ERR

To return the error code of an error occurred and the line number where the
error occurred.

A=ERL

B=ERR

When an error occurs, the error code is stored in the variable ERR and the line
number where the error occurred is stored in the variable ERL. If the
statement that caused the error was executed in the direct mode, line
number 65535 is stored in the variable ERL.

Normally, the ERL and ERR variables are used in the error trapping routine
specified by an ON ERROR GOTO statement to control the processing flow.

(See ON ERROR GOTO.)

I?

m
X
v

FORMAT
PURPOSE
[EXAVIPLE |

{REMARKS

EXP (<numeric expression>)
To return the value of an exponential function with e as its base.
A=EXP(1)

The value of <numeric expression> must be the result of an exponential
function. If the value of <numeric expression> is greater than 88.02969, an
OV (“Overflow”) error occurs.

4-7

http://www.fastio.com/

1

FIX 3 HEX$

[Jel:IULYM FIX (<numeric expres§i0n>) _ . ‘ - '3 LEIIN HEX$(<numeric expression>)
LIISEA To return the truncated integer part of a numeric expression. LGSR A To return a string which represents the hexadecimal value of the decimal

[RCNIEEY A=FIX(—B/3) va argument.
[DEWIEIS A$S=HEX$(65535)
GEYEXETE FIX returns the value of <numeric expression> as a truncated integer part.

TrIITY NNy

HEX$ converts the decimal value of <numeric expression> to a hexadecimal
value and returns it as a string. The value of <numeric expression> must be
in the range —32768 to 6553b5. if the value of <numeric expression> includes
a decimal fraction, it is rounded to an integer before HEX$ (<numeric
expression>) is evaluated.

(See CINT and INT.)

wi o wd

(See OCT$ and VAL)

(7

SAMPLE
PROGRAMME

LIST

166 PRINT " DEC OCT HEX"

118 FOR I=5 70 16

120 PRINT USING"####"5 13

139 PRINT USING"& &"3" ",0CT$CI),HEXS(]

FRE

Lin

D]
149 HEXT 1

FRE(<expression=>) }k‘ 3 RUN
To return the size of an unused memory area. : DEC OCT HEX
PRINT FRE(O) 5 5 5
PRINT FRE(“A$") e 3 ¢ & ¢
EIENEXTE |f the <expression> is a numeric expression, FRE returns the number of free Fl) 3 g i? g
bytes in the BASIC text area. If <expression> is a string expression, FRE J 10 12 A
returns the number of bytes in the BASIC string area. <expression> is 11 13 B
merely a dummy. Any arguments to FRE may be assigned as long as they are F—L‘a 12 14 C
numeric or string expressions. Since the size of the unused memory area 13 15 D
displayed includes a work area for BASIC programme execution, please use . 3 14 16 E
the displayed memory capacity as a guide only. 15 ;g q

LI_
w B
. o
)

Akl

VIVY

i

I\

ClibPDF - www . fastio.com 4-8 4-9

http://www.fastio.com/

INKEYS

[ZosHU:N INKEYS

[(VEIEeEIAl To return a one-character string of the pressed character key or a null string if
no character key is pressed.

[FGWIHRY AS=INKEYS$

INKEY$ returns a null string if the keyboard buffer is empty. If the keyboard
buffer contains any character key input, INKEY$ reads the character from the
buffer and returns it as a one-character string. Any keys not included in the
“Character Code Table” such as key, etc., are ignored.

ClibPD

www fastio.com

(See APPENDIX F, “Character Code Table”.)

4-10

-

S
y

i

W

_

Aok ol

SLEE
INIVY

INPUTS

IJela ('Yl INPUT$S(<number of characters>[,[#]<file number>])
QUSRI To return a string of characters read from a specified file.
DOV AS=INPUTS$(5,#3)

INPUT$ reads a string of characters in the number specified by <number of
characters> from the file specified by <file number>. If <file number> is
omitted, characters can be input from the keyboard; but the characters input
from the keyboard are not echoed (i.e., not displayed on the screen), unlike
the execution of an INPUT statement.

INPUTS$ is in a wait state until a string of characters specified by <number of
characters> is all input. However, if any input data exists in the input buffer,
INPUT$ reads characters from the buffer.

With an INPUTS, all characters except key are read as is. Therefore,
INPUT$ allows the input of characters, such as Carriage Return {(character
code 13), etc., which cannot be entered by INPUT and LINE INPUT
statements.

http://www.fastio.com/

s
INSTR 3 INT

2oLV INSTR([<numeric expression>,]<string 1>, <string 2>>) m eIl INT(<numeric expression>)
FILEEIEIS To search for the first occurrence of one string in another string and return the IVELIeXSAl To return the largest integer value (truncated).
position of the searched string. : »ﬁs SANNENE PRINT INT (—B/3)

DO 4EY B=INSTR(AS$,”"XYZ")
FIAVEGIE] INT returns the largest integer value which is equal to or less than the value of

n

RIANELLEE] INSTR searches for the first occurrence of <string 2> in <string 1> and ‘k 3 <numeric expression>.
returns the position at which the match is found. If <string 2> cannot be
found, INSTR returns 0. ‘?‘ 1'3 (See FIX and CINT.)

<numeric expression> is the position for starting the search. If <numeric
expression> is omitted, the search is started from the beginning of <string
1>. If a null string is specified as <string 2>, INSTR returns the same value
as that specified by <numeric expression>.

SAMPLE
‘:’3 PROGRAMME

[
&
i

LIST

188 PRINT " 1 CINT INT FIx"
118 FOR I=2.4 TO ~-2.4 STEP -8.3

128 A%=CINT(I>

139 BX=INTCID

148 Cx=FIXC1)

158 PRINT USING " ##. 8$"51;

168 PRINT USING " #k## "3AM3B%:C%

SAMPLE
PROGRAMME

LIST

rrreryy

168 A$="ZXCUBNM,. /AS FG JKL 3" 178 NEXT I
116 E$=INPUTSC1) LI | 129 END
126 C=INSTR(A$,B$) RUN
128 IF C=p GOTO 110 , 1 CINT INT FIX
148 IF C>18 THENC=C+17 E- 3 2.4 2 2 2
150 SOUKD C+5.2 2.1 2 2 2
164 GOTO11@ 1.3 2 1 1
> e 3 s 2 1 1
1.2 1 1 1
E_ 5 8.9 1 <] 5]
8.6 1 2 2
8.3 9 9 @
L 2.9 2 9 @
-2, 3 9 -1 @
-2.6 -1 -1 2
| = -8.2 -1 -1 e
' -2 -1 -2 -1
j -1. 5 -1 _2 "1
& 3 -1.8 -2 -2 -1
—g; -2 -3 -2
| -2. - - -
ClibPD www fastio.com 4-12 A:ﬂ 4-13

http://www.fastio.com/

LOF

[ROLMVUNM L OF (<file number>)
LTI To return the size of a specified file.

[ONIIHEY A=LOF(3)

RIENEGTE] The file specified by <file number> must have been opened in the input
mode. If the specified file number is in a ROM cartridge, LOF returns the

LEFTS

ol {YW:Yl LEFT$(<string>,<numeric expression>)
[OIUOIST To return an arbitrary length of string from the leftmost characters of a string.
2GS BS=LEFTS$(AS,4)

il

RIFVGHEY The value of <numeric expression> must be in the range of 0 to 255. If
<numeric expression> is greater than the total number of characters in

wid

<string>, the entire string will be returned. If <numeric expression> is 0, the remaining length of the file in units of bytes. If the specified file number is in
null string (length zero) is returned. 3 the RS-232C port, LOF returns the number of data stored in the buffer in units
of bytes.

(See MID$ and RIGHTS.)

LEN

WOV LEN(<string>)
[RORIHONIY To return the total number of characters in a string.

[GNI48 A=LEN(AS$)

RENUEGLES] LEN returns the total number of characters in <string>.
If <string> includes non-printing characters such as control codes and
blanks, they are not actually output but are counted as characters.

LOG

[ZOLA1i Sl L OG(<numeric expression>)
VG To return the natural logarithm of a numeric expression.
GWIHEY PRINT LOG(2.7812818)

HIEGTE] LOG returns the natural logarithm of the value given by <numeric
expression>.

e law law

(See APPENDIX F, Character Code Table.)

A A

Imu’u.

al akl

S

ClibPDFE - wyvnw fastio.com 4-14 4-15

http://www.fastio.com/

MID$ i OCTS

EITNE MID$(<string>,<expression 1>[,<expressi9n 2>>1) m HENISE OCTS$(<numeric expression>)
CILEESHA To return an arbitrary length of string from a string. VGEIEERA To return a string which represents the octal value of the decimal argument.
FEWRS BS=MIDS(AS,2.3) 4 FEWENE PRINT OCT$(123+456)

MIDS$ returns a string of characters in the length specified by <expression 2>

from the <string> beginning with the <expression 1>th character. The
values of <expression 1> and <expression 2> must be in the ranges 1 to
255 and 0 to 255, respectively.
If <expression 2> is omitted or if there are fewer than <expression 2>
characters to the right of the <expression 1>th character, all rightmost
characters beginning with the <expression 1>th character are returned.
When the number of characters in <string> is fewer than <expression 1>,
MID$ returns a null string.

= OCT$ converts the decimal value of <numeric expression> to an octal value

- and returns it as a string. The value of <numeric expression> must be in the
range of —32768 to 656535. If the value of <numeric expression> includes a
decimal fraction, it is rounded to an integer before OCT$ (<numeric
expression>) is evaluated.

" .

{See HEXS$.)

(See LEFT$ and RIGHTS.)

SAMPLE
PROGRAMME

LIST

100 A$="ABCDEFGHI JKLMN"

119 PRINT " MID$ LEFTS *PEEK
RIGHT$ *

120 FOR I=1 1O ?

130 M$=MID$(AS$.1,7)
149 L$=LEFT$(AS, DD
159 R$=RIGHT#(A$, 1>

[ROIMINE PEEK(<address>)

WYMo To return the byte read from a specified memory location.
OIS A=PEEK(&HO0C00)

i e e

{60 PRINT USING ™ & "sME, LS. RS

é ES HEXT 1 PEEK returns the byte read from the memory location specified by
HID$ LEFTS RIGHTS <address> <address> must be in the range of 0 to 65535 (&HO to
QBCDEFG a N &HFFEF). If the value of <address> includes a decimal fraction, it is rounded

BCDEFGH AB MN to an integer.
CDEFGHI ABC L;MN Since the memory space from addresses &HO to &H4D is a special area
EEEE?§ é zgggE ’}kEEN zljl(c:g:'(eac(j:j df:)erslsr;pslft/output, an overrun may occur simply by reading any of
ES?}JE; ggggggs ﬁi’?luémn l In EPSON BASIC, when a PEEK is executed for any of the abovementioned
4 addresses, an FC (“lllegal function call”) error occurs. To read these

"

addresses, &H80 must be written into &H7E {to set MSB).

(See POKE.)

[

rErLE

ClibPD wwwy fastio.cot
l0.com 4-16 4-17

http://www.fastio.com/

POINT

Jol:{\{I:Nl POINT(<<horizontal coordinate>,<vertical coordinate>)
[AVIdeI To return the status of a dot at a specified location on the graphic screen.
[, 0WIHAY PRINT POINT(100,10)

RN POINT checks whether or not a dot has been drawn at the location specified

by <horizontal coordinate> and <vertical coordinate> on the graphic screen.
With the LCD, POINT returns 1 if a dot has been set at the specified location
and 0O if no dot has been set. With the external display, color codes 0 to 3 are
returned. Please note that the LCD is different from the external dispiay in the
range within which you can specify graphic coordinates.

SAMPLE
PROGRANME

SEDEFIMT A-2
[IH FOlv. 7o
FRIMT "aRCH
FoR "r‘=EJ T ¥
FOR #=B 70 17
Fixs "’\"F’l’lINT'i%s'-r')
HEXT ®.¥
FOR V=0 TO 7
PRINT
FOR w=8 TO 17
IF F{X.%y THEN as="1}
H ELSE H$_ll "
218 PEINT A%
228 MERT HaY

Ay

Lod b o= 5

e
T O T S T

Frld bk bk b ek feb b et o ek

[t e BN i R

DO N o v]

www. fastio.com 4-18

_—;

%

s

-

[

| I

POS

FORMAT
PURPOSE

EXAMPLE
REMARKS

POS(<digit>)

To return the horizontal position of the cursor on the virtual screen or the
horizontal position of the printer head.

X=POS(0)

The value of <digit> must be in the range of 0 to 16. If 0 is specified, POS
returns the horizontal position of the cursor on the virtual screen.

If any of the integers from 1 to 16 is specified, POS returns the number of
characters stored in the buffer (namely, the number of characters that has
been output following the output of the L.F code and before execution of this
function) on the file opened using the integer as a file number.

These numbers also correspond to the horizontal positions of the printer
head.

{See CSRLIN and LOF.)

RIGHTS

WOLIIENE RIGHTS$(<<string>,<numeric expression>)
[V To return an arbitrary length of string from the rightmost characters of a

string.

2 OWILEY PRINT RIGHT$(”ABCD”,3)

AIENURGIEY The value of <numeric expression> must be in the range of 0 to 255, If

<numeric expression> is greater than the total number of characters in
<string>, the entire string will be returned. If <numeric expression> is 0, the
null string {length zero) is returned.

{See LEFT$ and MIDS$.)

419

http://www.fastio.com/

RND w3 SGN

Ryl RND[(<numeric expression>)] wi [ZOVILYM SGN(<numeric expression>)
FWEERE A To return a random number. VeI To return the sign of the value of a numeric expression.

CWIIHEE A=RND(1) ‘ 3 OGNS B=SGN(A)

HEANEGLEESY RND returns a random number between O and 1. The random number
generated varies with the value of <numeric expression> as follows.

If the value of <numeric expression> is positive, SGN returns 1. If the value
of <numeric expression> is 0, SGN returns 0. If the value of <numeric
expression> is negative, SGN returns —1.

® |f <numeric expression> is negative, a new sequence of random numbers

is generated.

® |f <numeric expression> is 0, the last generated random number is

repeated.

e |f <numeric expression> is positive, the next random number in the

sequence is generated.

33

If <numeric expression> is omitted, the next random number in the
seguence is also generated. The same sequence of random numbers is
generated each time a RUN or CLEAR statement is executed, if the random
number generator is not reseeded by a RANDOMIZE statement.

(See RANDOMIZE.)
PROGRAMME

LIST

168G DEFINT H.B

118 DIM B(128:

128 INPUT "MUMBER OF REP
ETITIONS "3

138 CLs

148 FOR I=8 TO A

158 H=RHMD*128

168 BONI=B(NI+1
178 PSET N 31-B(H>)
188 NEXT

SIN

WOLIILNM SIN(<numeric expression>)
[W¥iIdORIY To return the sine of a numeric expression.
DONILEY PRINT SIN(3.1415926/2)

MAIREIE] SIN returns the sine of <numeric expression> in radians.

(See COS and TAN.)

>

RUN

HUMBER OF REPETITION
5 7 2008

i)

medicaldall bbb

L oo e

(i

ClibPDF - wyvwy fastio.com 4-20 4-21

http://www.fastio.com/

SPACES$ 3 SQR

Je:1l:Yl SPACES$(<numeric expression>) m RIS SQR{(<numeric expression>) . ,

VLRI To return a string of spaces of a specified length. GO To return the square root of a numeric expression.

DAV AS="A"+SPACE$(10)+“C"” Fv::s [T B A=SQR(2)

NN E] SPACES returns a string of spaces of the length specified by <numeric EIHVEGIE] SOR returns the square root of. <numeric expression>.
expression>. The value of <numeric expression> must be in the range of 0 F‘:S The value of <numeric expression> must be greater than O.

to 255.

(See SPC and TAB.) Eta

SPC -3 STRS

Nl SPC(<digit>) E o HOLULYM STR$(<numeric expression>)

[V To output a specified number of blanks. - WYildO]] To return a string representation of the value of a numeric expression.

[ENIHE] PRINT SPC(10);”A” . ‘”3 EWIILEY AS=STR$(123)

MAUERTEY SPC outputs blanks in the number specified by <digit>. This function may AIAUEGES] STRS converts the value specified by <numeric expression> to a string. For
only be used in output statements such as PRINT. The value of <digit> must k:a <numeric expression>, you can use any type of numeric constants.

be in the range of 0 to 255.

- (See STRINGS and VAL.)
(See SPACES$ and TAB.) H

ClibPDF - www . fastio.com 4-92 4-23

http://www.fastio.com/

STRINGS

Sl STRINGS (<integer expression>, | <string expression>)

<numeric expression>>

FWEITeRIa To return a string of specified characters.
[FCWIENY PRINT STRING$(10,65)

AT STRINGS returns a string of characters specified by <string expression> or

ClibPD

<numeric expression> in the length specified by <integer expression>. If
<string expression> is specified as a string of characters to be returned, all
characters having the first character of the string are returned.

If <numeric expression> is specified, all characters having ASCII code
specified by the numeric expression are returned. The value of <numeric
expression> must be in the range of 0 to 255.

(See STRS.)

www fastio.com 424

TAB

PURPOSE

EXAMPLE
REMARKS

TAB(<numeric expression>)

To space to a specified position on the line where the cursor is currently
positioned.

PRINT TAB(10);“ABC"”

TAB is used only in output statements such as PRINT and LPRINT.
TAB outputs blanks from the current cursor position to the position specified
by <numeric expression> counted from the left-hand end on the virtual
screen.

The value of <numeric expression> may be in the range of 0 to 255 with 0 as
the leftmost position. In other words, value of <numeric expression>
corresponds to the remainder when it is divided by the number of characters
to be displayed horizontally. If the position specified by <numeric
expression> is at the left of the current cursor position, TAB goes to that
position on the next line.

Please note the difference between the SPC function and the TAB function.

(See SPC.)

TAN

({OLVIIYM TAN(<numeric expression>)
WU To return the tangent of a numeric expression.
GV A=TAN(3.1416/4)

MIVBRGLEET TAN returns the tangent of the value of <numeric expression> in radians.

{See COS and SIN.)

4-25

http://www.fastio.com/

*TAPCNT TIMIES

LGSl TAPCNT ﬁ‘i LIl TIME$="HH:MM:SS”

A6l To return the value of the microcassette drive counter. 4SO To return the time kept by the internal calendar clock.
[EY PRINT TAPCNT NI PRINT TIMES
A=TAPCNT

TIME$ displays or sets thé time kept by the internal clock of the HX-20. The
?S time is set or displayed in the format "HH:MM:SS” where the value of HH
ranges from 00 to 23 and the values of MM and SS range from 00 to 59. Once
the correct time has been set, you are not required to set the time again, as
the HX-20 clock keeps track of the time and date.

TAPCNT function is used to read the value of the microcassette drive counter.
The returned value is in the range of —32768 to 32767. This counter value is
always returned as positive after the counter has been reset by a WIND
command. By assigning a value to TAPCNT, you can set the counter value.

i

{See WIND.) {See DATE$ and DAY.)

SAMPLE
PROGRAMME

TTRV 1]

i

166 TAPCNT=@

116 OPEN "0",#1,"CASA: TEST"
129 FOR I=1 TO 10

Z0 PRIMTH#1,131%1

148 MEXT

158 CLOSE

169 WIND B

172 OPEM "I",#1,"CASB:TEST"
188 IF EOF(1) THEN 220

199 IHPUT#1,A,B

269 PRINT A8

219 GOTO 180

USR

RN USR[<digit>l{<argument>) ‘
(MM To call machine language subroutine defined by DEFUSR statement.

DGR A=USR 1(B)

528 CLOSE USR calls your machine language subroutine {user-defined function) with
278 END <argument>. Before calling the user-defined function, it must have been
RUN written into the memory, and its execution starting address must have been
defined by the DEFUSR statement.

A maximum of 10 user-defined functions can be set by <digit> whose value
is in the range of 0 to 9 and corresponds to the digit supplied with the
DEFUSR statement for that routine. If <digit> is omitted, USRO is assumed.
With <argument>, you can transfer a value from EPSON BASIC to your
machine language subroutine.

i

rrrrrrYeS

s 1A%

B i

(See DEF USR and Chapter 5, “Machine Language Subroutines”.)

=00 NV S
LX)
HOR®
] F: H ,’ T

ClibPDF - www . fastio.com 4-26 4-27

http://www.fastio.com/

oYYl VAL(<string expression>) .
HVETIeI8 To return the numerical value of a string expression.

[N A=VAL(“—123")

REAEGIEY [f the first character of <string expression> is not +, —, &, ., or a digit, VAL !
(<string expression>) = 0. T

If a character other than digits (0 to F in hexadecimal numbers and 0 to 7 in CHAPTER 5
octal numbers) appears, the following characters are ignored. Blanks in ‘7;3
<string expression> are also ignored.
i - - [}
(00 cHrs ana 7o) W= Additional Information

B
VAL :EB
¥F=3
F=3
=3

VARPTR

VARPTR(<variable name>) E

(MBI To return the address of a variable or array.
CWIYEE PRINT HEX$(VARPTR(A))

Any type of <variable name> (numeric, string, or array) can be specified. A .

value must be assigned to the variable specified by <variable name> before k':a
executing VARPTR.
The returned address will be an integer in the range of —~32768 to 32767. If a
negative address is returned, obtain the actual value by adding it to 65536.
Whenever a value is assigned to a new variable other than arrays, the
addresses of the arrays change. Therefore, all simple variables must be
assigned before calling VARPTR for an array.

(See Chapter 5, “Machine Language Programmes.”)

ClibPDF - www . fastio.com 4-28

http://www.fastio.com/

ClibPD

www . fastio.com

—

W W dddd

lgia‘

S BRI A N B I R R
W W ool

R

rmmwmm
(AR

5.1 RAM files

RAM (random) files are one of the many features of EPSON BASIC.

With RAM files,

e Data can be accessed randomly.

e Data can be changed freely.

o High access speed is assured as compared with the I/O transfer speed to and from
peripheral devices.

Because of the above advantages, RAM files may be regarded the same as array variables.
RAM files also feature the following:

® Data is retained even after the power switch is turned OFF.

e Data can be shared by plural programmes.

In view of the above features, RAM files are ideal for data to be handled more frequently

than those in sequential files, and are thus useful for:

® Storage of variable tables, conversion tables, etc., to be used constantly. (Scientific
calculations)

® Storage of data necessary for daily transaction processing (Business management)

In EPSON BASIC, five separate programmes can be stored simultaneously. However, RAM
files must be shared by these five programmes and cannot be used at the discretion of
plural programmes. In using PUT% statments, be careful so that data files may not be
accidentally destroyed by other programmes.

In fact, RAM files as a whole occupy a single area, but the RAM file area may be used as
separate files apparently using a DEFFIL statement. The DEFFIL statement specifies the
location of the first record in the RAM file area and the locations of records to be read or
written by a GET% or PUT% statement after the execution of the DEFFIL will be shifted
relatively.

The type of variable of the data to be read by a GET% statement must match that of the
data written by a PUT% statement. The number of bytes occupied on the memory space
by each type of variable is different as follows.

Integer variable 2 bytes
Single precision variable 4 bytes
Double precision variable 8 bytes
String variable Indefinite

For this reason, if the data written as an integer value is to be read as a double precision or
single precision value, the result will be an entirely different value.

The length of one record is determined by a DEFFIL statement and within that record,
numeric variables occupy the length specified for each variable type. The remaining length
of the record is allocated to string variables. This is because of the fact that the length of a

string variable is indefinite, and in GET% and PUT% statements, string variables can be
used only after numeric variables.

5-1

http://www.fastio.com/

Example:
100 DEFFIL 20, 200
20.:0 PUT% 0, Al, B#, C%, D$
30?0 GET% O, E!, F#, G%, H$
460 END

In this programme, the location of a file is as shown below.

Top of RAM file

~—— 200th byte

Record 1 -—— End of RAM file

\ v
20 bytes
The record length of, for example, Record O is allocated as follows.

2 bytes
RO

Execution of the programme results as follows.

El=Al, F#=B#
G%=C%, H$=D$

As an example of the use of a RAM file, let’s prepare a file to record the individual statisti_cs
for each of the players of a baseball team, using the player's uniform numbers as file
numbers to reference the files.

ClibPDF - www .fastio.com Eo

13

Wl od U

AEXEEXEEELELE
iy

I

v
&

§

The first thing you must consider is the record length for each player. In this example, let's
deal with the At-Bats, Hits and RBI (Runs Batted In) for each player. You can handle all three
values as integer values. You will need to record the player names in aiphabetic characters.
To this end, let's have a string variable of a maximum of 20 bytes.

AB (At-bats) 2 bytes
H (Hits) 2 bytes
RBI (Runs Batted In) 2 bytes
Player Name 20 bytes
Total 26 bytes

AN /

20 bytes

R/_/;.v_/
2bytes 2bytes 2bytes

Next, you must determine the total file length
required for the team's statistics. You already
know the record length for each player. All
that you must do here is to multiply the length
of the individual record by the number of
players on the team. Assuming that the team
has 25 players, the total file length will be as
follows.

26x25 = 650 bytes

You can now write programmes for recording
the individual player's statistics according to
the required functions.

5.1.1 Creation of a RAM file

Though somewhat unusual, let’s limit the player’s uniform numbers to the range 0 to 24. In
this programme, you only need to write the AB, H and RBI data available for each player up
to this point.

188 CLEAR 260.650

118 DEFINT U, &-H.R

128 DEFFIL 25.0

lﬁ@ INPUT "UNIFORM HNO. "
148 IF U>24 THEN 218

138 IMPUT "MAME "3 NRS$
168 IMPUT "AT BATS “3A
178 INPUT "HITS “3H
188 IMPUT "RBI "3
193 PUTX U, A H.R.NAS
288 6070 139

216 END

5-3

http://www.fastio.com/

Even if you input a player name longer than 20 characters, no error will occur. However, as
only 20 bytes are available for the player name field on a record in the RAM file, only the
first 20 characters of the name will be stored. Since each of the three variables (AB, H and
RBI) requires 2 bytes, the variables are declared as integer type by a DEFFINT statement.

5.1.2 Retrieval and updating of data in RAM file

This programme is used to read the data written into the RAM file by the programme in the
preceding example. Since each player name is already entered in the file, all that is
necessary for you to retrieve the data relating to a player is to input the player uniform
number. If you type “Y” following the displayed data, the individual record can be updated.
The newly entered statistics will then be added to the statistics currently recorded.

228 CLERR 208,650
238 DEFINT U@, H R

244 DEFFIL 268

258 PRINT

268 INPUT "UNIFORM NO,
sl

278 IF U>25 THEN END

288 GET% U A H. R NAS

2596 AU=H-CENECAD

188 PRINT NA$

3168 PRINT "AT BATS "iA
3268 PRINT TAB(18): "HITS
"iH

338 PRINT "RBI "3

740 PRINT TAEC1E)3 "AUERA
BE_"3AU

356 PRINT "UFDATE (Y/N)"

3':8 IF INPUT#CI2C"Y" B0

T 238

I78 PRINT

Zea INPUT "AT BATS “3kA
96 IMPUT “HITS “ixH
488 INFUT "REBI "3 ER

418 PUTY U a+ad: HeHR . R+R
470 GOTO 288

In addition to the two sample programmes given, you can also write a programme to list the
players’ performance records in the order of batting average or a programme to select and
list the individual records of, say, top 5 players. With these programmes and data files
prepared by the HX-20, you can manage your baseball team practically.

ClibPD www fastio.com 5-4

I

I

T

JUV IRV V]

[IHHITES

5.2 Sequential files

If you consider the recording of music on an audio cassette, you will realize that musical
numbers are recorded in sequence and that to listen to a particular musical number, you
must advance the tape to the section of the tape where that number is recorded. A
sequential file operates on the similar principle except that, instead of music, a sequence of
data is recorded on the tape.

The speed and flexibility of RAM files are very attractive, but their memory capacity limits
the amount of data that can be handled. For this reason, much data cannot be handled on
each RAM file.

Also, when using a RAM file, you must write a programme by taking the internal file
structure into account.

In contrast, sequential files feature ease of operation in addition to:

e Unlimited data handling capacity
® Simple file structure

However, despite such advantages, sequential files have the following drawbacks as well.

e Data can only be accessed in sequence.
e Data can therefore not be retrieved quickly.
® Partial changes to the data file cannot be effected.

When you prepare a programme using a RAM or sequential file, the relative merits and
demerits of both types of files must be weighed before making your selection.
To use a sequential file, you must observe the following procedure.

(1) Open the file.

(2) Input data from the file to memory using an INPUT# statement, or output data from
memory to the file using a PRINT# statement.

(3) Close the file.

Each of sequential files are assigned a file number when they are created and all
subsequent |/O operations to and from these files (using INPUT#, PRINT#, etc.) are
performed by specifying a particular file with this file number. Therefore, no two files can
exist at the same time under the same file number. Also, once a file has been OPENed
under a certain file number, no other files can be opened using that number until the file
first opened is closed.

Data to be read with an INPUT# statement must match the data written with a PRINT#
statement in both the variable type and the number of variables. In a sequential file, data is
read in sequence from the beginning of the file. Therefore, if there is any difference in the
number of variables, subsequent INPUT# statement will read all the data in incorrect
sequence. If there is a difference in the type of variable, a TM (“Type Mismatch”) error will
occur.

5-6

http://www.fastio.com/

After the I/O transfer using the sequential file, you must always execute a CLOSE (or END)
statement. With EPSON BASIC, data transfer between the HX-20 and peripheral
equipment is performed in units of 266 bytes. For example, when writing data into the file,
a write operation will not take place until 256 bytes of data have accumulated in the buffer.
If a CLOSE (or END) statement is not executed at the end of the programme, data will
remain in the buffer and not be output. In this case, the file will also be left incomplete
without a delimiter being written at the end of the file.

As an example of the use of a sequential file, let's write a programme for an address
directory. In the preceding example of RAM file, remember, you had to carefully consider
the record structure such as record description items and record length. However, with
sequential files, as there are no particular restrictions on the amount of data, you are only
required to decide on the record description items and the order in which you wish to file
them.

5.2.1 Creation of a sequential file

This programme is to record a list of names, addresses, phone numbers and birth dates on
an audio cassette tape.

Although you can write such data as name, address, etc., all together as a string, it is better
to record by delimiting these description items for subsequent data utilization.

168 OPEN"O".#1,"CAS1:aDR
118 PRINT

128 IMPUT "NHAME ":HNAMES

138 IF NAME$="" THEN 256
4@ IMPUT "ADDRESS":ADRS$
156 THPUT "TELEFHONE "3

EL#

168 PRINT"DATE OF BIRTH"
iva INFUT " YEAR";

128 INPUT " MONTH":M

19 INPUT " DAY"3D

2688 PRINTH1, NAMES

210 PRINT#1, ADRS$

228 PRINT#1.TELS

270 PRINTH#1.YiM:D

243 GOTO 11ie

238 CLOsE

268 EHD

If you observe the operation of the audio cassette, you will probably notice that the tape
does not advance all the time. This is because of the action of the buffer described in the
preceding section. That is, a write operation is performed only after a specified amount of
data has accumulated in the buffer. After you input all the data for the required number of
persons, press only the key at line 120 to assign a null string to A$. This will
branch the programme to line 250 to CLOSE the file. This step cannot be skipped.
If you press key to terminate the programme after all the data input has been
completed, data will remain in the buffer and the file will not be closed.

ClibPD www fastio.com 5-6

5.2.2 Retrieval of data from sequential file

To demonstrate the advantages of using this computer, rather than simply outputting the
recorded data as it was entered, let's write a more useful programme to output selected
data from the file, for example, the data of only those people born on a certain year.

108 OPEN "I".#1,"CAS1:AD
RS"

118 PRINT "PEOPLE BORN U
HAT YEAR?"

126 INPUT N

138 LPRINT " ®%% BORN IN
H;N; 'l***"

149 IF EOF(1> THEN GOTO
233

158 IHPUT#1,NAMES, ADRS, T
EL$.Y,M,D

168 IF HCOY GOTD 148

178 LFRINT

186 LPRINT MAMES

199 LPRINT ADR$

268 LLISTNT TEL$

218 LPRINT "BORN ;115 "/
; ~'; ll"/ﬂ; ‘)

220 GOTO 148

23@ LFRINT

248 LPRINT " %ok END OF
RETRIEUAL ¥k

250 CLOSE

268 END

In the preceding file creation programme, you have indicated the end of file by pressing
key. However, when reading a file, this determination is made by the EOF
function. If you omit line 140 in the above programme, an IE (“Input past end”) error will
occur.

5.2.3 Correction of data in sequential files

In a sequential file, you cannot change only a portion of the data recorded on a file. To
correct the file, you must prepare another file and write correct data into the new file while
reading the old data file. As the HX-20 allows you to use both a microcassette drive
("CAS0:”) and an audio cassette (“CAS1:"), you can perform the file updating utilising
these two units.

b5-7

http://www.fastio.com/

ClibPD

186 CHT=TAHPCHNT

118 OFEM "I":#1,"CASI:AD
E:SII

128 OPEN “DY,#2."CASO:W0
RK"

136 IF EOFCL> GOTO 3268
146 IHPUT #1.HAMES,ADRS.
TEL;* "l" ? M* D

158 FRINT NAMES

168 PRINT ADR$

178 PRINT TELS$

180 PRINT “BORMN “iM3 " "3
D " one)

198 PRIMT "0O YOU WISH T
0 MAKE CORRECTIONS CY/N2
Eéﬁ IF INPUTH{13<5"Y" G0
TO 298

218 PRINT

28 INPUT "HAME "INA
MES

238 INPUT "ADDRESS “"3AD
ji%3

248 THPUT "TELEPH@NE";TE

250 PRIMT "DATE OF BIRTH

268 INPUT " VYEAR"3Y
278 THPUT * MONTH":M
Z2@ INPUT “ Dav"iD
2% FRINT#2, HAMES, ADRS, T
EL$

308 PRINT#2,Y:iM:D

318 aaTo 138

Zz@ CLOSE

338 WIHD CHT

Z48 PRINT "PLEASE REWIND
THE CHRSSETTE®

258 PRINT

IEB PRINT "IF OK. PLEASE
IHPUT wyuw

378 IF INPUT$CIDC"Y" GO

TO Za8

58 OFEN "O".#1."CAS1:AD

RE; i

390 OPEN "I".#2."CASe:l0

RK"

468 IF EOQF(Z> GOTO 446

418 INFUT#H#1, NAMES, ADRS, T

EL$.¥.M:D

428 PRINT#2, HAMES, ADRS. T

EL%$.Y:M,D

438 GOTO 468

443 CLOSE

3568 END

www fastio.com 5-8

The actual transfer of data from the old to the new file terminates at line 320. In this state,
the new file is in the microcassette drive. For subsequent data file utilisation, you must
transfer the data in the new file back to the file in the audio cassette. The tape in the
microcassette drive can be rewound using a WIND statement in a programme. The audio
cassette, however, must be operated manually. In this sample programme, two files are
used so that a larger amount of data may be stored.

If the amount of data to handle is small and all the data can be stored in the memory at one
time, corrections of data file can be performed just the same as the RAM file.

5.3 Machine language programmes

In EPSON BASIC, the USR function and the EXEC statement are provided as functions to
call user programmes written in machine language. USR, like other functions, can pass data
using an argument. The EXEC statement, however, has no function to pass any variables.
In BASIC, even if a programme containing a bug is executed, execution stops but the
programme itself will not be destroyed. However, in a machine language programme, even
if a single bit is incorrect, all the programmes (including BASIC programmes) may be
destroyed.

5.3.1 Memory allocation

When using user programmes written in machine language, memory space must be
secured so that BASIC programmes and data are protected and that machine language
programmes are not destroyed by any BASIC programmes, In EPSON BASIC, machine
language programmes are placed before the BASIC programme area and the memory
space for machine language programmes is secured using a MEMSET command.
Therefore, you must execute this MEMSET command before loading any machine
language programme. '

The execution of the MEMSET command secures the machine language programme area

and at the same .time moves BASIC programmes. Therefore, BASIC programmes
previously stored in memory are protected against destruction.

5-9

http://www.fastio.com/

il
il

il

Machine language
programme area

L

OA3F

004D

0000 After MEMSET
execution

0000 Before MEMSET
execution

5.3.2 Writing and loading programmes

A machine language programme is loaded into the memory using the MONITOR function
of the HX-20. Short programmes can be written into the memory using a POKE statement.
A machine language programme you have written can also be stored as a machine
language programme file in the same manner as BASIC programmes using a SAVEM or
LOADM command.

The HX-20 has a vacant location for an expansion ROM socket to enable you to store your
completely debugged programmes in the expansion ROM, so that you can always use
them as the utility software of the HX-20. You can also store less frequently used
programmes in the ROM cassette as a programme file.

In this way, programme loading time can be reduced greatly and the operability of the
HX-20 can be improved as well.

5.3.3 USR function

The format of the USR function to call a machine language programme is as follows.
USRI{(<digit>)}{<argument>)

<digit> may be an integer from 0 to 9 and must correspond to the digit supplied in the
DEFUSR statement. <argument> may be any numeric or string expression.

The USR function has one argument. The accumulator A contains a value that specifies the
argument type.

ClibPDF - www . fastio.com 5-10

The values used and their meanings are as follows.

Value in accumulator Argument type
2 Integer
3 String
4 Single-precision real number
8 Double-precision real number

If the argument type is numeric, the value in the index register shows the address of the
“floating-point accumulator” where the argument is stored.

This floating-point accumulator does not refer to the memory location where a variable
itself is stored, but refers to a special area used when BASIC performs an arithmetic
operation. The actual value is stored in the “floating-point accumulator” in a different form
depending on the argument type as follows.

e When the argument is an integer:

« Address indicated by the index register

Upper 8 bits
Lower 8 bits

o \When the argument is a single-precision real number:

Exponent « Address indicated by the index register

Sign bit and upper 7 bits of
mantissa

Middle 8 bits of mantissa
Lower 8 bits of mantissa

¢ When the argument is a double-precision real number:
« Address indicated by the index register

Exponent

Sign bit and upper 7 bits of
mantissa

Lower 8 bits of mantissa

® When the argument is a string:

The value of the index register indicates the address of 3-byte data called “string
descriptor”.

Length of string «— Address indicated by the index register
Upper bits stored address

Lower bits stored address

The string descriptor is a pointer which indicates the address where a string type data is
actually stored. By referring to the address indicated by this string descriptor, you can find
the data passed as an argument.

http://www.fastio.com/

When the USR function returns a value to BASIC, data must be stored in the same format
" in the location where the argument was stored (i.e., the location indicated by the
floating-point accumulator or string descriptor). Therefore, the type of value retured from
the USR function must be the same as that of the value specified as the argument.

To return to a BASIC programme from the USR function, machine language subroutine RTS
(&H39) is used. For this reason, the value of the stack pointer when programme control is
returned to BASIC must be the same as that when the USR function was called.

5.3.4 EXEC statement

Machine language subroutines can also be executed by an EXEC statement.
EXEC[<address>]

When a machine language subroutine is loaded into memory using a LOADM command, or
when the execution starting address has been specified by EXEC, <address> can be
omitted.

EXEC only executes the programme from the specified address and has no function to pass
an argument. When variables are to be passed between a BASIC programme and a
machine language programme called by an EXEC statement, it is performed through the
direct read and write of the variables stored in memory. You can do this in the following
ways.

(1) To POKE and PEEK the specified addresses of the machine language area using the
BASIC programme. ~

(2) To directly read and write data in the BASIC variable area using the machine language
programme.

When you use method (2), you must check beforehand the addresses of the variables to be
written or read using the VARPTR function.

5.3.56 VARPTR function

With the VARPTR function, you can check at which address in memory your specified
variable is stored. VARPTR is used to pass a variable to a machine language programme to
be called by an EXEC statement, or to pass two or more variables using the USR function.

When using the VARPTR function, a value must have been assigned to the variable
specified as the argument before execution of VARPTR.

The value returned by the VARPTR function is the top address of the specified variable data.
If the variable is a string, the d_ata is not the value of the variable but is a <string descriptor>
which is a pointer indicating the address where the string type data is stored.

ClibPD www fastio.com 5-12

LD

rr
HIV

=

When a variable is stored in memory, the variable type, length of variable name and variable
name (maximum 16 characters) are stored immediately before the value of the variable.

(1) Variable type
Using the first 4 bits of the first byte of data, variables are classified according to the
length that the data occupies, as follows.

: Integer

: String

: Single-precision real number
. Double-precision real number

0 WN

(2) Length of variable name
Using the last 4 bits of the first byte of data, the actual length of the variable name
minus one is stored. Therefore, when the variable name is a single character, 0O is stored
as the value.

(3) Variable name

Starting from the second byte of data, the variable name of the length indicated in (2)
above is stored in ASCIl format. Although the variable name is stored in a maximum of
16 characters, only the required number of bytes are used.

o When the variable type is an integer:

0010 [Length of variable name — 1
First character of variable name

i Variable length
« Address indicated by VARPTR

Upper 8 bits
Lower 8 bits

® \When the variable type is a string:

0011 |Length of variable name — 1
First character of variable name

} Variable length
«- Address indicated by VARPTR

Length of string
Upper bits stored address
Lower bits stored address

® When the variable type is a single-precision real number:

0100 [Length of variable name — 1
First character of variable name

Variable length
« Address indicated by VARPTR

Exponent :

Sign bit and upper 7 bits of mantissa
Middle 8 bits of mantissa

Lower 8 bits of mantissa

K13

http://www.fastio.com/

ClibPD

e \When the variable type is a double-precision real number:

1000 [Length of variable name — 1
First character of variable name

i Variable length
<« Address indicated by VARPTR

Exponent
Sign bit and upper 7 bits of mantissa

Lower 8 bits of mantissa

Real-numbers type data are always normalized to omit the most significant bit of the
mantissa. Also, whatever the value of the mantissa may be, if the exponent is 0, the value
of the mantissa is assumed as 0. Compared to the index register which points the address
of the floating-point accumulator when the USR function is called, the value of a variable
specified by the VARPTR function indicates the address where the variable is stored. Do
not confuse these two types of functions. Be especially careful with integer variables, as
they are stored somewhat differently from other variable types.

5.4 How to use the RS-232C port

The HX-20 incorporates an RS-232C interface to allow communication with external
devices. The RS-232C port in the HX-20 is normally used to connect an external printer with
the HX-20. RS-232C is an EIA Standard for the interface between a MODEM and the
associated data terminal equipment.

With this RS-232C interface, the HX-20 can communicate directly with other computers. By
connecting an acoustic coupler to the RS-232C interface, the HX-20 can also transfer data
to and from remote locations via subscriber lines.

The RS-232C standard is widely in use by various kinds of communications equipment.
However, as this standard merely prescribes electrical characteristics, use of signal lines,
transmission procedures, etc., differ from one type of equipment to another. Therefore,
when connecting an external device to the HX-20, you must carefully check the external
device for agreement of interface conditions with those of the HX-20 so that proper
communications can be established under the same interface conditions.

wwvw fastio.com 14

With the HX-20, this setting of interface conditions can be performed using BASIC. (See
OPEN"COMO:"). Once the uniform interface conditions have been established between
the HX-20 and the external device, all other procedures are the same as when you use
normal files. If you specify <file number> in a programme statement, you can perform /0
operations using PRINT# and INPUT# statements. With the HX-20 in the direct mode, you
can directly transfer programmes between the HX-20 and external devices using
LIST*COMO:” and LOAD“COMO:” commands.

NOTE:

If you execute an output command by specifying “COMO:” as the device name when no
external device is connected to the RS-232C port or when the connection between the
HX-20 and the external device is faulty, the operation of the HX-20 may terminate. Should
this happen, press key, to return the HX-20 to command level.

Also, when a long line of characters is transferred without specifying the print width for
“COMO: ", the default value will be in effect and automatic line feed will take place at every
80 characters. When you send a long string exceeding 80 characters, you must first
execute WIDTH “COMO:", 255 to set the print width as infinite.

5.4.1 Interfacing with optional devices

All the devices available as the options to the HX-20 have standardised signal lines.
Therefore, as long as the exclusive interface cables specified by EPSON are used, you are
not required to have a special knowledge of the RS-232C interface.

(1) Interfacing between two HX-20 units

You must use interface cables (optional cable set #715) when interfacing your HX-20
with another HX-20 unit. In this method, you do not need to set the interface conditions
and can omit <BLPSC>.

NOTE:

When directly transferring programmes using a LIST “COMO:" or LOAD “COMO: "
command, data may be lost during the data transfer if the data processing speed of the
receiving HX-20 cannot catch up with the data transfer speed of the transmitting
equipment. To transfer programmes properly in such a case, be sure to lower the bit
rate of the transmitting equipment.

(2

—

Interfacing with a terminal printer

Whgn connecting an external terminal printer to the HX-20, the printer must be
feqmpped with an RS-232C interface. (For any of EPSON MX series printers, use
interface board #8141 or #8145.) You must also use special interface cables (cable set
#714).

There are two methods of using a terminal printer depending on whether you use the
interface conditions of the HX-20 or those of the terminal printer.

® When setting the interface conditions at the terminal printer:

You .ne.ed not set the interface conditions <BLPSC> for your HX-20. By simply
specifying <device name> as “COMO: " in either direct mode or programme mode, you
can use the terminal printer just the same as the built-in microprinter “LPTO:”.

b-15

http://www.fastio.com/

Set the interface conditions of the terminal printer as follows. (For details, see the user's
manual of the applicable interface board.)

Bit rate 4,800 bps
Word length 8 bits
Parity bit No parity
Stop bit length 2 bits

o When setting the interface conditions at the HX-20:

If you specify <device name> as “COMO:", you must set the interface conditions
<BLPSC> as follows.

Bit rate
Word length Set to the same parameters
Parity bit of the terminal printer.

Stop bit length
Control lines active Specify “B” (hex) when using an EPSON MX series

interface board.

Example:
Bit rate 300 bps
Word length 7 bits
Parity bit Even parity
Stop bit length 1 bit

Control lines active Handshaking by DSR signal (To match to the factory-
set conditions interface board #8145, specify

“COMO0"(27E1B)".)

NOTE:

The maximum bit rate of the HX-20 is 4,800 bps. If the bit rate of the printer has been set at
9,600 bps, you must change the setting of the printer to 4,800 bps, as you cannot make this
parameter compatible with that of the printer at the HX-20.

(3) Interfacing with an acoustic coupler
To interface the HX-20 with the optional acoustic coupler CX-20, you must use special
interface cables (optional cable set #706).
When using the acoustic coupler, the interface conditions of both the HX-20 and CX-20
must be set to match to those of the transmitting/receiving equipment.

ClibPDF - www . fastio.com 5-16

Word length -
Parity bitg Set.to the same parameters of the transmitting/receiving
Stop bit length equipment.

Bit rate Must be the same as that of the transmitting/receiving

equipment but must be 300 bps max. due to limitations of
telephone lines. (0 < B < 2)

Control lines active As all control lines are normally used, specify “2” (hex).

5.4.2 Interfacing with other external equipment

To interface the HX-20 with external devices other than those specified as the options to
the HX-20, you must have a deep knowledge of the RS-232C interface. You can set the bit
rate, word length, parity bit and stop bit length to match to those of the device to be
connected to the HX-20. But the signal lines used, the method of handshaking, etc. are
different from one device to another.

Simply connecting the signal lines of the same name will not assure successful
communication between the two devices. You must have correct understanding of the
function of each signal line.

The HX-20 uses the following 9 signal lines.

Pin No. Signal Signal direction Function
1 GND - Signal GND
2 TXD Out Transmitted data
3 RXD In Received data
4 RTS Out Request to send
5 CTS In Clear to send
6 DSR In Data set ready
7 DTR Out Data terminal ready
8 CD In Carrier detect
E FG - Protective GND

® Pin No. 1 — GND
Signal of zero potential which serves as reference for all other signals.
® Pin No. 2 — TXD
Output signal line to send data from the HX-20. Data is output in negative logic.
® Pin No. 3 — RXD
Input signal line to receive data by the HX-20. Data is input in negative logic.
® Pin No. 4 — RTS
Output signal line to request the grant for data transmission. When this signal (normally
of positive potential) is active, it indicates that the HX-20 is ready for data transmission.
By specifying “C” in <BLPSC> setting, it can be changed to that a signal of negative
potential has significance.

5-17

http://www.fastio.com/

In the HX-20, data transmission and reception can be controlled by signal lines CTS and
DSR. You can find the status of data reception by signal line DTR. When you connect the
HX-20 to any other external device, you must check carefully the functions of all the signal
lines provided in the device and make required connections based on the function and not
the nomenclature of each line.

® Pin No. 56 — CTS

Input signal line to receive the grant for data transmission. if this signal line is at positive
potential, the HX-20 judges that the request for data transmission has been granted, and
starts data transmission.

If the potential of this signal changes to negative, the HX-20 stops transmission and
waits until the signal potential becomes positive to restart transmission. By specifying
“C” in <BLPSC> setting, this signal can be ignored. If it is done so, the signal potential
is always assumed as positive. When interfacing with equipment other than the acoustic
coupler, this signal is often directly connected to the RTS signal, but in the HX-20, data
transmission and reception can also be controlled by this signal.

® Pin No. 6 — DSR

Input signal line used by the HX-20 to find if the counterpart is ready to receive data.
When the potential of this signal is positive, the HX-20 judges that the counterpart is
ready to receive data. Therefore, data tranmission can be terminated by changing this
signal potential to negative. This is the main signal used by the HX-20 to control the FE;

I

transmission of data. By specifying “C" in <BLPSC> setting, this signal can be ignored.
If this is done, the potential of this signal is always assumed as positive. This signal is

originally intended to function as a response signal to the DTR signal to detect whether F—
or not the communication circuit is ready. However, in the HX-20, this line is used as an E
input signal line to detect the BUSY state of the transmitting/receiving peripheral. i

Therefore during data transmission, the HX-20 always monitors this control line. E-

e Pin No. 7 — DTR k=3

This signal line is intended to output a signal by the HX-20 to the peripheral devices to
request information as to whether the communication circuits are ready or not. This E —
information request is made when the level of this signal is positive.

In the HX-20, this signal line has another function. When the HX-20 is to function as a E
receiving equipment, this output signal informs the transmitting equipment of whether
or not the HX-20 is ready to receive data. When the potential of this signal is ,
high-impedence, the HX-20 is not ready to receive data, that is, BUSY. k :‘3
NOTE:

DTR is connected to the power supply line of the RS-232C and high-speed serial F_:a
interface driver. For this reason, if the RS-232C interface or high-speed serial interface is -
turned ON, DTR signal will automatically be activated.

® Pin No. 8 — CD

Input signal line to detect that data is being sent from the transmitting equipment to the ﬁ
HX-20. When the potential of this signal is positive, the HX-20 judges that data is to be
sent from the peripheral connected to the HX-20. This control line is required when the Fia
HX-20 is connected to the acoustic coupler. In all other cases, this signal can be ignored
by specifying “C” in <BLPSC> setting. F;:a

ClibPDF - www.fastio.com 5-18 E“::a) 5-19

http://www.fastio.com/

	./brm3-78_4-00.tif
	./brm4-01.tif
	./brm4-02_4-03.tif
	./brm4-04_4-05.tif
	./brm4-06_4-07.tif
	./brm4-08_4-09.tif
	./brm4-10_4-11.tif
	./brm4-12_4-13.tif
	./brm4-14_4-15.tif
	./brm4-16_4-17.tif
	./brm4-18_4-19.tif
	./brm4-20_4-21.tif
	./brm4-22_4-23.tif
	./brm4-24_4-25.tif
	./brm4-26_4-27.tif
	./brm4-28_5-00.tif
	./brm5-01.tif
	./brm5-02_5-03.tif
	./brm5-04_5-05.tif
	./brm5-06_5-07.tif
	./brm5-08_5-09.tif
	./brm5-10_5-11.tif
	./brm5-12_5-13.tif
	./brm5-14_5-15.tif
	./brm5-16_5-17.tif
	./brm5-18_5-19.tif

