VAX MACRO and
Instruction Set Reference
Manual

Order Number: AA-LA89B-TE

June 1990

This document describes the features of the VAX MACRO instruction set
and assembler. It includes a detailed description of MACRO directives and
instructions, as well as information about MACRO source program syntax.

Revision/Update Information:  This manual supersedes the VAX MACRO
and Instruction Set Reference Manual,
Version 5.2

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts




June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GiGl ReGIS VMS
DECnet HSC ULTRIX vT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX ”
DECwriter MASSBUS VAXcluster dlilglit[a]1]

The following is a third-party trademark:

PostScript is a registered trademark of Adobe Systems Incorporated.

ZK4515




Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LNO03 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.







Contents

PREFACE xxiii
VAXMACRO LANGUAGE
CHAPTER 1 INTRODUCTION 1-1
CHAPTER 2 VAX MACRO SOURCE STATEMENT FORMAT 21
21 LABEL FIELD 2-2
2.2 OPERATOR FIELD 2-3
23 OPERAND FIELD 2-3
24 COMMENT FIELD 2-3
CHAPTER 3 COMPONENTS OF MACRO SOURCE STATEMENTS 3-1
3.1 CHARACTER SET 3-1
3.2 NUMBERS 3-2
3.2.1 integers 3-3
3.22 Floating-Point Numbers 3-3
3.23 Packed Decimal Strings 34
3.3 SYMBOLS 3-4
3.3.1 Permanent Symbols 3-5
3.3.2 User-Defined Symbols and Macro Names 3-5
333 Determining Symbol Values 3-6




Contents

34 LOCAL LABELS 3-7
35 TERMS AND EXPRESSIONS 3-9
3.6 UNARY OPERATORS 3-10
3.6.1 Radix Control Operators 3-11
3.6.2 Textual Operators 3-12
3.6.2.1 ASCII Operator + 3-12
3.6.2.2 Register Mask Operator » 3-13
3.6.3 Numeric Control Operators 3-14
3.6.3.1 Floating-Point Operator « 3-14
3.6.3.2 Complement Operator « 3-14
37 BINARY OPERATORS 3-15
3.71 Arithmetic Shift Operator 3-16
3.7.2 Logical AND Operator 3-16
3.7.3 Logical Inclusive OR Operator 3-16
374 Logical Exclusive OR Operator 3-16
3.8 DIRECT ASSIGNMENT STATEMENTS 3-17
3.9 CURRENT LOCATION COUNTER 3-17
CHAPTER 4 MACRO ARGUMENTS AND STRING OPERATORS 4-1
4.1 ARGUMENTS IN MACROS 4-1
4.2 DEFAULT VALUES 4-2
4.3 KEYWORD ARGUMENTS 4-3
44 STRING ARGUMENTS 4-3
45 ARGUMENT CONCATENATION 4-5

vi




Contents

4.6 PASSING NUMERIC VALUES OF SYMBOLS 4-6
4.7 CREATED LOCAL LABELS 4-7
4.8 MACRO STRING OPERATORS 4-8
4.8.1 %LENGTH Operator 4-8
4.8.2 %LOCATE Operator 4-9
483 %EXTRACT Operator 4-10
CHAPTER 5 VAX MACRO ADDRESSING MODES 5-1
5.1 GENERAL REGISTER MODES 5-1
5.1.1 Register Mode 54
5.1.2 Register Deferred Mode 5-5
5.1.3 Autoincrement Mode 5-5
51.4 Autoincrement Deferred Mode 5-6
5.1.5 Autodecrement Mode 5-7
5.1.6 Displacement Mode 5-8
51.7 Displacement Deferred Mode 5-9
5.1.8 Literal Mode 5-10
5.2 PROGRAM COUNTER MODES 5-12
5.21 Relative Mode 5-12
522 Relative Deferred Mode 5-13
5.2.3 Absolute Mode 5-14
5.24 Immediate Mode 5-14
5.25 General Mode 5-15
5.3 INDEX MODE 5-16
5.4 BRANCH MODE 5-18
CHAPTER 6 VAX MACRO ASSEMBLER DIRECTIVES 6-1

.ADDRESS
.ALIGN
ASCIX
.ASCIiC
.ASCID

6-5
6-7

6-9

vii




Contents

viii

ASCII
ASCIZ
BLKX
BYTE
.CROSS
.DEBUG
.DEFAULT
.D_FLOATING
.DISABLE
ENABLE
.END
.ENDC
.ENDM
.ENDR
.ENTRY
.ERROR
.EVEN
.EXTERNAL
.F_FLOATING
.G_FLOATING
.GLOBAL
H_FLOATING
IDENT

JIF

JF_X

AIF

JIRP

IRPC
LIBRARY
.LINK
LIST
.LONG
.MACRO
MASK
MCALL
.MDELETE
MEXIT
NARG
.NCHR
NLIST
.NOCROSS
.NOSHOW




.NTYPE
.OCTA

.ODD

.OPDEF
.PACKED
.PAGE

PRINT

.PSECT

.QUAD

.REFN
.REPEAT
.RESTORE_PSECT
.SAVE_PSECT
.SHOW
.SIGNED_BYTE
.SIGNED_WORD
.SUBTITLE
TITLE
.TRANSFER
\WARN

WEAK

.WORD

Contents

VAX DATA TYPES AND INSTRUCTION SET

CHAPTER 7 TERMINOLOGY AND CONVENTIONS 7-1
7.1 NUMBERING 7-1
7.2 UNPREDICTABLE AND UNDEFINED 7-1
7.3 RANGES AND EXTENTS 7-1
74 mMBZ 7-1




Contents

7.5 RAZ 7-2
7.6 SBzZ 7-2
7.7 RESERVED 7-2
7.8 FIGURE DRAWING CONVENTIONS 7-2
CHAPTER 8 BASIC ARCHITECTURE 8-1
8.1 VAX ADDRESSING 8-1
82 DATA TYPES 81
8.2.1 Byte 8-1
8.2.2 Word 8-2
8.2.3 Longword 8-2
8.2.4 Quadword 8-2
8.25 Octaword 8-3
8.2.6 F_floating 8-3
8.2.7 D_floating 84
8.2.8 G_floating 84
8.2.9 H_floating 8-5
8.2.10 Variable-Length Bit Field 8-6
8.2.11 Character String 8-7
8.2.12 Trailing Numeric String 8-8
8.2.13 Leading Separate Numeric String 8-11
8.2.14 Packed Decimal String 8-13
8.3 PROCESSOR STATUS LONGWORD (PSL) 814
8.3.1 C Bit 8-15
8.3.2 V Bit 8-15
83.3 Z Bit 815
8.3.4 N Bit 8-15
8.3.5 T Bit 8-15
8.3.6 IV Bit 8-15
8.3.7 FU Bit 8-16
8.3.8 DV Bit 8-16




Contents

8.4 PERMANENT EXCEPTION ENABLES 8-16
8.4.1 Divide by Zero 8-16
8.4.2 Floating Overflow 8-16
8.5 INSTRUCTION AND ADDRESSING MODE FORMATS 8-16
8.5.1 Opcode Formats 8-16
8.5.2 Operand Specifiers 8-17
86 GENERAL ADDRESSING MODE FORMATS 8-18
8.6.1 Register Mode 8-19
8.6.2 Register Deferred Mode 8-19
8.6.3 Autoincrement Mode 8-19
8.6.4 Autoincrement Deferred Mode 8-20
8.6.5 Autodecrement Mode 8-21
8.6.6 Displacement Mode 8-21
8.6.7 Displacement Deferred Mode 8-22
8.6.8 Literal Mode 8-23
8.6.9 Index Mode 8-26
8.7 SUMMARY OF GENERAL MODE ADDRESSING 8-27
8.7.1 General Register Addressing 8-27
8.7.2 Program Counter Addressing 8-28
8.8 BRANCH MODE ADDRESSING FORMATS 8-29
CHAPTER 9 VAXINSTRUCTION SET 9-1
9.1 INTRODUCTION TO THE VAX INSTRUCTION SET 9-1
9.2 INSTRUCTION DESCRIPTIONS 9-1
9.2.1 Integer Arithmetic and Logical Instructions 9-5

ADAWI
ADD
ADWC
ASH
BIC
BIS
BIT
CLR

9-7

9-9
9-10
9-11
9-12
9-13
9-14

xi




Contents

9.2.2

9.2.3

9.2.4

xii

CMP 9-15
CVT 9-16
DEC 917
DIV 9-18
EDIV 9-19
EMUL 9-20
INC 9-21
MCOM 9-22
MNEG 9-23
MOV 9-24
MOVZ 9-25
MUL 9-26
PUSHL 9-27
ROTL 9-28
SBWC 9-29
SUB 9-30
TST 9-31
XOR 9-32
Address Instructions
MOVA 9-34
PUSHA 9-35
Variable-Length Bit Field Instructions
CMP 9-38
EXT 9-39
FF 9-40
INSV 9-41
Control Instructions
ACB 9-44
AOBLEQ 9-46
AOBLSS 9-47
B 9-48
BB 9-50
BB 9-51
BB 9-52
BLB 9-53
BR 9-54
BSB 9-55
CASE 9-56
JMP 9-58
JSB 9-59
RSB 9-60
SOBGEQ 9-61

9-33

9-36




9.2.5

9.2.6

9.2.7

9.2.71
9.2.7.2
9.2.7.3

9.2.8

9.2.8.1
9.28.2
9.2.8.3
9.2.84

SOBGTR 9-62
Procedure Call Instructions
CALLG 9-65
CALLS 9-67
RET 9-69
Miscellaneous Instructions
BICPSW 9-71
BISPSW 9-72
BPT 9-73
HALT 9-74
INDEX 9-75
MOVPSL 9-77
NOP 9-78
POPR 9-79
PUSHR 9-80
XFC 9-81
Queue Instructions
Absolute Queues « 9-82
Self-Relative Queues * 9-85
Instruction Descriptions + 9-88
INSQHI 9-89
INSQTI 9-91
INSQUE 9-93
REMQHI! 9-95
REMQTI 9-97
REMQUE 9-99
Floating-Point Instructions
Introduction + 9-101
Overview of the Instruction Set » 9-103
Accuracy « 9-103
Instruction Descriptions « 9—105
ADD 9-107
CLR 9-108
CMP 9-109
CvT 9-110
DIV 9-113
EMOD 9-115
MNEG 9-117
MOV 9-118
MUL 9-119
POLY 9-120
sSuB 9-123
TST 9-125

Contents

9-63

9-70

9-82

9-101

xiii




Contents

xiv

9.2.9

9.2.10

9.2.11

9.2.11.1
9.2.11.2
9.2.11.3
9.2.11.4
9.2.11.5
9.2.11.6
9.2.11.7

9.2.12

Character String Instructions

CMPC 9-128
LOCC 9-130
MATCHC 9-131
MOVC 9-132
MOVTC 9-134
MOVTUC 9-136
SCANC 9-138
SKPC 9-139
SPANC 9-140
Cyclic Redundancy Check Instruction
CRC 9-142
Decimal String Instructions
Decimal Overflow + 9-145
Zero Numbers + 9-145
Reserved Operand Exception » 9-145
UNPREDICTABLE Results « 9-145
Packed Decimal Operations « 9-145
Zero-Length Decimal Strings + 9-146
Instruction Descriptions « 9-146
ADDP 9-148
ASHP 9-150
CMPP 9-152
CVTLP 9-153
CVTPL 9-154
CVTPS 9-155
CVTPT 9-157
CVTSP 9-159
CVTTP 9-161
DIVP 9-163
MOVP 9-165
MULP 9-166
SuUBP 9-167
The EDITPC Instruction and Its Pattern Operators
EDITPC 9-170
EO$ADJUST_INPUT 9-175
EO$BLANK_ZERO 9-176
EOSEND 9-177
EO$END_FLOAT 9-178
EOS$FILL 9-179
EO$FLOAT 9-180
EOSINSERT 9-181
EOS$LOAD_ 9-182

9-126

9-141

9-144

9-169




Contents

EO$SMOVE 9-183
EO$REPLACE_SIGN 9-184
EO$_SIGNIF 9-185
EO$STORE_SIGN 9-186
9.2.13 Other VAX Instructions 9-187
PROBEX 9-188
CHM 9-190
REI 9-192
LDPCTX 9-193
SVPCTX 9-194
MTPR 9-195
MFPR 9-196
BUG 9-197
CHAPTER 10 VAX VECTOR ARCHITECTURE 10-1
10.1 INTRODUCTION TO VAX VECTOR ARCHITECTURE 10-1
10.2 VAX VECTOR ARCHITECTURE REGISTERS 10-1
10.2.1 Vector Registers 10-1
10.2.2 Vector Control Registers 10-2
10.2.3 Internal Processor Registers 10-3
10.3 VECTOR INSTRUCTION FORMATS 10-9
10.3.1 Masked Operations 10-12
10.3.2 Exception Enable Bit 10-12
10.3.3 Modify Intent Bit 10-12
10.34 Register Specifier Fields 10-13
10.35 Vector Control Word Formats 10-13
10.3.6 Restrictions on Operand Specifier Usage 10-16
10.3.7 VAX Condition Codes 10-17
10.3.8 lllegal Vector Opcodes 10-17
10.4 ASSEMBLER NOTATION 10-17
10.5 EXECUTION MODEL 10-18
10.5.1 Access Mode Restrictions 10-20
10.5.2 Scalar Context Switching 10-20
10.5.3 Overlapped Instruction Execution 10-21
10.5.3.1 Vector Chaining « 10-22

XV




Contents

xvi

10.5.3.2 Register Conflict + 10-23
10.5.3.3 Dependences Among Vector Results « 10-24
10.6 VECTOR PROCESSOR EXCEPTIONS 10-28
10.6.1 Vector Memory Management Exception Handling 10-28
10.6.2 Vector Arithmetic Exceptions 10-30
10.6.3 Vector Processor Disabled 10-31
10.6.4 Handling Disabled Faults and Vector Context Switching 10-32
10.6.5 MFVP Exception Reporting Examples 10-35
10.7 SYNCHRONIZATION 10-37
10.7.1 Scalar/Vector Instruction Synchronization (SYNC) 10-37
10.7.2 Scalar/Vector Memory Synchronization 10-38
10.7.2.1 Memory Instruction Synchronization (MSYNC) « 10-39
10.7.2.2 Memory Activity Completion Synchronization (VMAC) - 10—40
10.7.3 Other Synchronization Between the Scalar and Vector
Processors 1041
10.7.4 Memory Synchronization Within the Vector Processor
(VSYNC) 1041

10.7.5 Required Use of Memory Synchronization Instructions 1042
10.7.5.1 When VSYNC Is Not Required + 10-44
10.8 MEMORY MANAGEMENT 10-47
10.9 HARDWARE ERRORS 10-47
10.10 VECTOR MEMORY ACCESS INSTRUCTIONS 1049
10.10.1 Alignment Considerations 1049
10.10.2 Stride Considerations 10-49
10.10.3 Context of Address Specifiers 10-49
10.10.4 Access Mode 10-49
10.10.5 Memory Instructions 10-49

VLD 10-50

VGATH 10-52

VST 10-54

VSCAT 10-56
10.11 VECTOR INTEGER INSTRUCTIONS 10-57

VADDL 10-58
VCMPL 10-59
VMULL 10-61




Contents

VSUBL 10-63
10.12 VECTOR LOGICAL AND SHIFT INSTRUCTIONS 10-64
VBIC, VBIS, AND VXOR 10-65
VSL 10-67
10.13 VECTOR FLOATING-POINT INSTRUCTIONS 10-68
10.13.1 Vector Floating-Point Exception Conditions 10-68
10.13.2 Floating-Point Instructions 10-69
VADD 10-70
VCMP 10-72
VVCVT 10-75
VDIV 10-78
VMUL ' 10-80
VSUB 10-82
10.14 VECTOR EDIT INSTRUCTIONS 10-83
VMERGE 10-84
IOTA 10-86
10.15 MISCELLANEOUS INSTRUCTIONS 10-87
MFVP 10-88
MTVP 10-90
VSYNC 10-91
APPENDIX A ASCIl CHARACTER SET A-1
APPENDIX B HEXADECIMAL/DECIMAL CONVERSION B-1
B.1 HEXADECIMAL TO DECIMAL B-1
B.2 DECIMAL TO HEXADECIMAL B-2

B.3 POWERS OF 2 AND 16 B-2

xvii




Contents

APPENDIX C VAX MACRO ASSEMBLER DIRECTIVES AND LANGUAGE

SUMMARY Cc-1
CA1 ASSEMBLER DIRECTIVES Cc1
C.2 SPECIAL CHARACTERS C-6
C3 OPERATORS c-7
C.3.1 Unary Operators c-7
C.32 Binary Operators Cc-8
C.33 Macro String Operators C-8
c.4 ADDRESSING MODES C-10

APPENDIX D PERMANENT SYMBOL TABLE DEFINED FOR USE WITH VAX
MACRO D-1

APPENDIX E EXCEPTIONS THAT MAY OCCUR DURING INSTRUCTION

EXECUTION E-1
E.1 ARITHMETIC TRAPS AND FAULTS E-1
E.1.1 Integer Overflow Trap E-2
E.1.2 Integer Divide-by-Zero Trap E-2
E1.3 Floating Overflow Trap E-2
E.1.4 Divide-by-Zero Trap E-2
E.1.5 Floating Underflow Trap E-3
E1.6 Decimal String Overflow Trap E-3
E.1.7 Subscript-Range Trap E-3
E.1.8 Floating Overflow Fault E-3
E.1.9 Divide-by-Zero Floating Fault E-3
E.1.10 Floating Underflow Fault E-4
E.2 MEMORY MANAGEMENT EXCEPTIONS E-4
E.2.1 Access Control Violation Fault E—4

E.2.2 Translation Not Valid Fault E-4

xviii




Contents

E.3 EXCEPTIONS DETECTED DURING OPERAND REFERENCE E-4
E.3.1 Reserved Addressing Mode Fault E-4
E.3.2 Reserved Operand Exception E-4
E.4 EXCEPTIONS OCCURRING AS THE CONSEQUENCE OF AN

INSTRUCTION E-6
EA4.1 Reserved or Privileged Instruction Fault E-6
E.4.2 Operand Reserved to Customers Fault E-6
E.A4.3 Instruction Emulation Exceptions E-6
E.4.4 Compatibility Mode Exception E-7
E.4.5 Change Mode Trap E-8
E.4.6 Breakpoint Fault E-8
E.5 TRACE FAULT E-8
E.5.1 Trace Operation When Entering a Change Mode Instruction __ E-9
E.5.2 Trace Operation Upon Return From interrupt E-9
E.5.3 Trace Operation After a BISPSW Instruction E-10
E.54 Trace Operation After a CALLS or CALLG Instruction E-10
E.6 SERIOUS SYSTEM FAILURES E-10
E.6.1 Kernel Stack Not Valid Abort E-10
E.6.2 Interrupt Stack Not Valid Halt E-10
E.6.3 Machine Check Exception E-11

INDEX
FIGURES

6-1 Using Transfer Vectors 6-97
10-1 Vector Register 10-2
10-2 Vector Length Register (VLR) 10-3
10-3 Vector Mask Register (VMR) 10-3
104 Vector Count Register (VCR) 10-3
10-5 Vector Processor Status Register (VPSR) 104
10-6 Vector Arithmetic Exception Register (VAER) 10-6
10-7 Vector Memory Activity Check (VMAC) Register 10-7
10-8 Vector Translation Buffer Invalidate All (VTBIA) Register ____ 10-7
10-9 Vector State Address Register (VSAR) 10-8
10-10 Vector Control Word Operand (cntrl) 10-10
10-11 Vector Control Word Format 10-15

xix




Contents

10-12 Memory Management Fault Stack Frame (as Sent by the

Vector Processor) 10-29
10-13 Encoding of the Reserved Operand 10-69
E-1 Compatibility Mode Exception Stack Frame E-7

TABLES

3-1 Special Characters Used in VAX MACRO Statements 3-1
3-2 Separating Characters in VAX MACRO Statements 3-2
3-3 Unary Operators 3-11
34 Binary Operators 3-15
5-1 Addressing Modes 5-2
5-2 Floating-Point Literals Expressed as Decimal Numbers ___ 5-11
5-3 Floating-Point Literals Expressed as Rational Numbers ___ 5-11
54 Index Mode Addressing 5-18
6-1 Summary of General Assembler Directives 6-1
6-2 Summary of Macro Directives 6-3
6-3 .ENABLE and .DISABLE Symbolic Arguments 6-22
64 Condition Tests for Conditional Assembly Directives 6—41
6-5 Operand Descriptors 6-72
6-6 Program Section Attributes 6-78
6-7 Default Program Section Attributes 6-79
6-8 .SHOW and .NOSHOW Symbolic Arguments 6-89
8-1 Representation of Least-Significant Digit and Sign in Zoned

Numeric Format 8-9
8-2 Representation of Least-Significant Digit and Sign in

Overpunch Format 8-10
8-3 Floating-Point Literals Expressed as Decimal Numbers 8-25
8-4 Floating-Point Literals Expressed as Rational Numbers _____ 8-25
8-5 General Register Addressing 8-28
8-6 Program Counter Addressing 8-29
9-1 Summary of EDITPC Pattern Operators 9-172
9-2 EDITPC Pattern Operator Encoding 9-173
10-1 Description of the Vector Processor Status Register (VPSR) 104
10-2 Possible VPSR<3:0> Settings for MTPR 10-5
10-3 State of the Vector Processor 10-6
104 VAER Exception Condition Summary Word Encoding 10-7
10-5 IPR Assignments 10-9
10-6 Description of the Vector Control Word Operand 10-11
10-7 Dependences for Vector Operate Instructions 10-25

XX




Contents

10-8 Dependences for Vector Load and Gather Instructions 10-25
10-9 Dependences for Vector Store and Scatter Instructions 10-26
10-10 Dependences for Vector Compare Instructions 10-26
10-11 Dependences for Vector MERGE Instructions 10-27
10-12 Dependences for IOTA Instruction 10-27
10-13 Dependences for MFVP Instructions 10-27
10-14 Miscellaneous Dependences 10-28
10-15 Possible Pairs of Read and Write Operations When

Scalar/Vector Memory Synchronization (M) or VSYNC (V) Is

Required Between Instructions That Reference the Same

Memory Location 10-44
10-16 Encoding of the Exception Condition Type (ETYPE) 10-69
Cc-1 Assembler Directives C-1
c-2 Special Characters Used in VAX MACRO Statements C-6
Cc-3 Summary of Unary Operators Cc-7
c-4 Summary of Binary Operators c-8
C-5 Macro String Operators c-9
Cc-6 Summary of Addressing Modes C-10
D-1 Opcodes (Alphabetic Order) and Functions D-1
D-2 One_Byte Opcodes (Numeric Order) D-12
D-3 Two_Byte Opcodes (Numeric Order) D-16
E-1 Arithmetic Exception Type Codes E-1
E-2 Compatibility Mode Exception Type Codes E-7

xxi







Preface

This manual describes the VAX MACRO language and the VAX instruction
set. It includes the format and function of each feature of the language.
The VAX Architecture Reference Manual describes the instruction set in
greater detail.

Intended Audience

This manual is intended for all programmers writing VAX MACRO
programs. You should be familiar with assembly language programming,
the VAX instruction set, and the VMS operating system before reading this
manual.

Document Structure

This manual is divided into two parts, each of which is subdivided into
several chapters.

Part I describes the VAX MACRO language.
e Chapter 1 introduces the features of the VAX MACRO language.

e Chapter 2 describes the format used in VAX MACRO source
statements.

e Chapter 3 describes the following components of VAX MACRO source
statements:

— Character set

— Numbers

—  Symbols

— Local labels

— Terms and expressions

— Unary and binary operators
— Direct assignment statements
— Current location counter

e Chapter 4 describes the arguments and string operators used with
macros.

e Chapter 5 summarizes and gives examples of using the VAX MACRO
addressing modes.

o Chapter 6 describes the VAX MACRO general assembler directives and
the directives used in defining and expanding macros.

xxiii




Preface

Part II describes the VAX data types, the instruction and addressing mode
formats, and the instruction set.

Chapter 7 summarizes the terminology and conventions used in the
descriptions in Part II.

Chapter 8 describes the basic VAX architecture, including the
following:

— Address space

— Data types

— Processor status longword

— Permanent exception enables

— Instruction and addressing mode formats

Chapter 9 describes the native-mode instruction set. The instructions
are divided into groups according to their function and are listed
alphabetically within each group.

Chapter 10 describes the extension to the VAX architecture for
integrated vector processing.

This manual also contains the following five appendixes:

Appendix A lists the ASCII character set used in VAX MACRO
programs.

Appendix B gives rules for hexadecimal/decimal conversion.

Appendix C summarizes the general assembler and macro directives
(in alphabetical order), special characters, unary operators, binary
operators, macro string operators, and addressing modes.

Appendix D lists the permanent symbols (instruction set) defined for
use with VAX MACRO.

Appendix E describes the exceptions (traps and faults) that may occur
during instruction execution.

Associated Documents
The following documents are relevant to VAX MACRO programming:

XXiv

VAX Architecture Reference Manual

VMS DCL Dictionary

The descriptions of the VMS Linker and Symbolic Debugger in:
— VMS Linker Utility Manual

— VMS Debugger Manual

Introduction to VMS System Routines

VMS Run-Time Library Routines Volume




Preface

Conventions

The following conventions are used in this manual:

Citrl/x

{}

boldface text

UPPERCASE TEXT

numbers

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (In
text, a key name is not enclosed in a box.)

in examples, a horizontal ellipsis indicates one of the
following possibilities:

- Additional optional arguments in a statement
have been omitted.

«  The preceding item or items can be repeated one
or more times.

»  Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes—binary,
octal, or hexadecimal—are explicitly indicated.

XXV







VAX MACRO Language

Part | provides an overview of the features of the VAX MACRO language. It
includes an introduction to the structure and components of VAX MACRO
source statements. Part | also contains a detailed discussion of the

VAX MACRO addressing modes, general assembler directives, and macro
directives.







1

Introduction

VAX MACRO is an assembly language for programming VAX computers
using the VMS operating system. Source programs written in VAX
MACRO are translated into object (or binary) code by the VAX MACRO
assembler, which produces an object module and, optionally, a listing file.
The features of the language are introduced in this chapter.

VAX MACRO source programs consist of a sequence of source statements.
These source statements may be any of the following:

e VAX native-mode instructions
¢ Direct assignment statements

¢ Assembler directives

Instructions manipulate data. They perform such functions as addition,
data conversion, and transfer of control. Instructions are usually followed
in the source statement by operands, which can be any kind of data
needed for the operation of the instruction. The VAX instruction set is
summarized in Appendix D of this volume and is described in detail in
Chapter 9. Direct assignment statements equate symbols to values.
Assembler directives guide the assembly process and provide tools for
using the instructions. There are two classes of assembler directives:
general assembler directives and macro directives.

General assembler directives can be used to perform the following
operations:

e Store data or reserve memory for data storage
e Control the alignment of parts of the program in memory

e Specify the methods of accessing the sections of memory in which the
program will be stored

e Specify the entry point of the program or a part of the program
e Specify the way in which symbols will be referenced

o Specify that a part of the program is to be assembled only under
certain conditions

e Control the format and content of the listing file
¢ Display informational messages

e Control the assembler options that are used to interpret the source
program

¢ Define new opcodes




Introduction

Macro directives are used to define macros and repeat blocks. They allow
you to perform the following operations:

* Repeat identical or similar sequences of source statements throughout
a program without rewriting those sequences

* Use string operators to manipulate and test the contents of source
statements

Use of macros and repeat blocks helps minimize programmer errors and
speeds the debugging process.




2 VAX MACRO Source Statement Format

A source program consists of a sequence of source statements that the
assembler interprets and processes, one at a time, generating object code
or performing a specific assembly-time process. A source statement can
occupy one source line or can extend onto several source lines. Each source
line can be up to 132 characters long; however, to ensure that the source
line fits (with its binary expansion) on one line in the listing file, no line
should exceed 80 characters.

VAX MACRO statements can consist of up to four fields, as follows:
e Label field—symbolically defines a location in a program.

e Operator field—specifies the action to be performed by the statement;
can be an instruction, an assembler directive, or a macro call.

e Operand field—contains the instruction operands or the assembler
directive arguments or the macro arguments.

e Comment field—contains a comment that explains the meaning of the
statement; does not affect program execution.

The label field and the comment field are optional. The label field ends
with a colon (:) and the comment field begins with a semicolon (;). The
operand field must conform to the format of the instruction, directive, or
macro specified in the operator field.

Although statement fields can be separated by either a space or a tab (see
Table 3-2), formatting statements with the tab character is recommended
for consistency and clarity and is a Digital convention.

Field Begins in Column Tab Characters to Reach Column
Label 1 0
Operator 9 1
Operand 17 2
Comment 41 5

For example:

.TITLE ROUT1

.ENTRY START, "M<> Beginning of routine

CLRL RO ; Clear register
LABT: SUBL3 #10,4 (AP),R2 ; Subtract 10
LAB2: BRB CONT ; Branch to another routine

Continue a single statement on several lines by using a hyphen (-) as the
last nonblank character before the comment field, or at the end of line
(when there is no comment). For example:

LAB1: MOVAL  W"BOOS$AL VECTOR, - ; Save boot driver
RPBSL_IOVEC(RT7)




2.1

VAX MACRO Source Statement Format

VAX MACRO treats the preceding statement as equivalent to the following
statement:

LABl: MOVAL W"BOOSAL_VECTOR,RPBSL IOVEC (R7) ; Save boot driver

A statement can be continued at any point. Do not continue permanent
and user-defined symbol names on two lines. If a symbol name is
continued and the first character on the second line is a tab or a blank,
the symbol name is terminated at that character. Section 3.3 describes
symbols in detail.

Note that when a statement occurs in a macro definition (see Chapter 4
and Chapter 6), the statement cannot contain more than 1000 characters.

Blank lines are legal, but they have no significance in the source program
except that they terminate a continued line.

The following sections describe each of the statement fields in detail.

Label Field

2-2

A label is a user-defined symbol that identifies a location in the program.
The symbol is assigned a value equal to the location counter where the
label occurs. The user-defined symbol name can be up to 31 characters
long and can contain any alphanumeric character and the underscore
(_), dollar sign ($), and period (.) characters. See Section 3.3.2 for a
description of the rules for forming user-defined symbol names in more
detail.

If a statement contains a label, the label must be in the first field on the
line.

A label is terminated by a colon (:) or a double colon (::). A single colon
indicates that the label is defined only for the current module (an internal
symbol). A double colon indicates that the label is globally defined; that is,
the label can be referenced by other object modules.

Once a label is defined, it cannot be redefined during the source program.
If a label is defined more than once, VAX MACRO displays an error
message when the label is defined and again when it is referenced.

If a label extends past column 7, place it on a line by itself so that the
following operator field can start in column 9 of the next line.

The following example illustrates some of the ways you can define labels:

EXP: .BLKL 50
DATA: : .BLKW 25

; Table stores expected values

; Data table accessed by store

; routine in another module

EVAL: CLRL RO ; Routine evaluates expressions

ERROR_IN_ARG: ; The arg-list contains an error
INCL RO ; increment error count

TEST:: MOVO EXP,R1 ; This tests routine

; referenced externally

TEST1: BRW EXIT Go to exit routine

The label field is also used for the symbol in a direct assignment statement
(see Section 3.8).




2.2

2.3

24

VAX MACRO Source Statement Format
2.2 Operator Field

Operator Field

The operator field specifies the action to be performed by the statement.
This field can contain an instruction, an assembler directive, or a macro
call.

When the operator is an instruction, VAX MACRO generates the binary
code for that instruction in the object module. The binary codes are listed
in Appendix D; the instruction set is described in Chapter 9. When the
operator is a directive, VAX MACRO performs certain control actions or
processing operations during source program assembly. The assembler
directives are described in Chapter 6. When the operator is a macro call,
VAX MACRO expands the macro. Macro calls are described in Chapter 4
and in Chapter 6 ( MACRO directive).

Use either a space or a tab character to terminate the operator field;
however, the tab is the recommended termination character.

Operand Field

The operand field can contain operands for instructions or arguments for
either assembler directives or macro calls.

Operands for instructions identify the memory locations or the registers
that are used by the machine operation. These operands specify the
addressing mode for the instruction, as described in Chapter 5. The
operand field for a specific instruction must contain the number of
operands required by that instruction. See Chapter 9 for descriptions
of the instructions and their operands.

Arguments for a directive must meet the format requirements of that
directive. Chapter 6 describes the directives and the format of their
arguments.

Operands for a macro must meet the requirements specified in the macro
definition. See the description of the .MACRO directive in Chapter 6.

If two or more operands are specified, they must be separated by commas
(,). VAX MACRO also allows a space or tab to be used as a separator
for arguments to any directive that does not accept expressions (see
Section 3.5 for a discussion of expressions). However, a comma is required
to separate operands for instructions and for directives that accept
expressions as arguments.

The semicolon that starts the comment field terminates the operand field.
If a line does not have a comment field, the operand field is terminated by
the end of the line.

Comment Field

The comment field contains text that explains the function of the
statement. Every line of code should have a comment. Comments do
not affect assembly processing or program execution. You can cause
user-written messages to be displayed during assembly by the .ERROR,
.PRINT, and .WARN directives (see descriptions in Chapter 6).

2-3




VAX MACRO Source Statement Format

2.4 Comment Field

2-4

The comment field must be preceded by a semicolon; it is terminated by
the end of the line. The comment field can contain any printable ASCII
character (see Appendix A).

To continue a lengthy comment to the next line, write the comment on the
next line and precede it with another semicolon. If a comment does not fit
on one line, it can be continued on the next, but the continuation must be
preceded by another semicolon. A comment can appear on a line by itself.

Write the text of a comment to convey the meaning rather than the action
of the statement. The instruction MOVAL BUF_PTR_1,R7, for example,
should have a comment such as “Get pointer to first buffer,” not “Move
address of BUF_PTR_1 to R7.”

For example:

MOVAL STRING_DES_1,R0 ; Get address of string

; descriptor
MOVZWL (RO),R1 ; Get length of string
MOVL 4 (RO) ,RO ; Get address of string




3

3.1

Components of MACRO Source Statements

This chapter describes the following components of VAX MACRO source
statements:

Character set

Numbers

Symbols

Local labels

Terms and expressions

Unary and binary operators
Direct assignment statements

Current location counter

Character Set

The following characters can be used in VAX MACRO source statements:

The letters of the alphabet, A to Z, uppercase and lowercase. Note
that the assembler considers lowercase letters equivalent to uppercase
letters except when they appear in ASCII strings.

The digits 0 to 9.
The special characters listed in Table 3-1.

Table 3-1 Special Characters Used in VAX MACRO Statements

Character Character Name Function
_ Underscore Character in symbol names
$ Dollar sign Character in symbol names
Period Character in symbol names, current location
counter, and decimal point
Colon Label terminator
= Equal sign Direct assignment operator and macro
keyword argument terminator
Tab Field terminator
Space Field terminator
# Number sign Immediate addressing mode indicator

(continued on next page)

31




3.2

Components of MACRO Source Statements

3.1 Character Set

Table 3-1 (Cont.) Special Characters Used in VAX MACRO Statements

Character Character Name Function

@ At sign Deferred addressing mode indicator and
arithmetic shift operator

, Comma Field, operand, and item separator

; Semicolon Comment field indicator

+ Plus sign Autoincrement addressing mode indicator,
unary plus operator, and arithmetic addition
operator

- Minus sign or Autodecrement addressing mode indicator,

hyphen unary minus operator, arithmetic subtraction

operator, and line continuation indicator

* Asterisk Arithmetic multiplication operator

/ Slash Arithmetic division operator

& Ampersand Logical AND operator

! Exclamation point Logical inclusive OR operator point

\ Backslash Logical exclusive OR and numeric conversion
indicator in macro arguments

A Circumflex Unary operators and macro argument delimiter

[] Square brackets Index addressing mode and repeat count
indicators

() Parentheses Register deferred addressing mode indicators

<> Angle brackets Argument or expression grouping delimiters

? Question mark Created local label indicator in macro

%o

Apostrophe
Percent sign

arguments
Macro argument concatenation indicator
Macro string operators

Table 3—2 defines the separating characters used in VAX MACRO.

Table 3-2 Separating Characters in VAX MACRO Statements

Numbers

3-2

Character Character Name Usage

(space) Space or tab Separator between statement fields. Spaces

(tab) within expressions are ignored.

, Comma Separator between symbolic arguments within
the operand field. Multiple expressions in the
operand field must be separated by commas.

Numbers can be integers, floating-point numbers, or packed decimal

strings.




3.2.1

3.2.2

Components of MACRO Source Statements
3.2 Numbers

Integers

Integers can be used in any expression including expressions in operands
and in direct assignment statements (Section 3.5 describes expressions).

Format
snn

S
An optional sign: plus sign (+) for positive numbers (the default) or minus
sign (—) for negative numbers.

nn
A string of numeric characters that is legal for the current radix.

VAX MACRO interprets all integers in the source program as decimal
unless the number is preceded by a radix control operator (see
Section 3.6.1).

Integers must be in the range of —2,147,483,648 to +2,147,483,647 for
signed data or in the range of 0 to 4,294,967,295 for unsigned data.

Negative numbers must be preceded by a minus sign; VAX MACRO
translates such numbers into two’s complement form. In positive numbers,
the plus sign is optional.

Floating-Point Numbers

A floating-point number can be used in the .F_FLOATING
(_FLOAT),.D_FLOATING (.DOUBLE), .G_FLOATING, and .H_FLOATING
directives (described in Chapter 6) or as an operand in a floating-point
instruction. A floating-point number cannot be used in an expression

or with a unary or binary operator except the unary plus, unary minus,
and unary floating-point operator, AF (F_FLOATING). Section 3.6 and
Section 3.7 describe unary and binary operators.

A floating-point number can be specified with or without an exponent.

Formats
Floating-point number without exponent:

snn
snn.nn
snn.

Floating-point number with exponent:

snnEsnn
snn.nnEsnn
snn.Esnn

3-3




Components of MACRO Source Statements
3.2 Numbers

S
An optional sign.

nn
A string of decimal digits in the range of 0 to 9.

The decimal point can appear anywhere to the right of the first digit.
Note that a floating-point number cannot start with a decimal point
because VAX MACRO will treat the number as a user-defined symbol
(see Section 3.3.2).

Floating-point numbers can be single-precision (32-bit), double-precision
(64-bit), or extended-precision (128-bit) quantities. The degree of precision
is 7 digits for single-precision numbers, 16 digits for double-precision
numbers, and 33 digits for extended-precision numbers.

The magnitude of a nonzero floating-point number cannot be smaller than
approximately 0.29E-38 or greater than approximately 1.7E38.

Single-precision floating-point numbers can be rounded (by default)

or truncated. The .ENABLE and .DISABLE directives (described in
Chapter 6) control whether single-precision floating-point numbers are
rounded or truncated. Double-precision and extended-precision floating-
point numbers are always rounded.

Section 8.2.6, Section 8.2.7, Section 8.2.8, and Section 8.2.9 describe the
internal format of floating-point numbers.

3.2.3 Packed Decimal Strings

A packed decimal string can be used only in the .PACKED directive
(described in Chapter 6).

Format

snn

S

An optional sign.

nn

A string containing up to 31 decimal digits in the range of 0 to 9.

A packed decimal string cannot have a decimal point or an exponent.

Section 8.2.14 describes the internal format of packed decimal strings.

3.3 Symbols

Three types of symbols can be used in VAX MACRO source programs:
permanent symbols, user-defined symbols, and macro names.




Components of MACRO Source Statements
3.3 Symbols

3.3.1 Permanent Symbols

Permanent symbols consist of instruction mnemonics (see Appendix D),
VAX MACRO directives (see Chapter 6), and register names. You need
not define instruction mnemonics and directives before you use them in
the operator field of a VAX MACRO source statement. Also, you need
not define register names before using them in the addressing modes (see
Chapter 5).

Register names cannot be redefined; that is, a symbol that you define
cannot be one of the register names contained in the following list. You
can express the 16 general registers of the VAX processor in a source
program only as follows:

Register

Name Processor Register

RO General register 0

R1 General register 1

R2 General register 2

R11 General register 11

R12 or General register 12 or argument pointer. If you use R12 as an

AP argument pointer, the name AP is recommended; if you use R12
as a general register, the name R12 is recommended.

FP Frame pointer

SP Stack pointer

PC Program counter

Note that the symbols IV and DV are also permanent symbols and cannot
be redefined. These symbols are used in the register mask to set the
integer overflow trap (IV) and the decimal string overflow trap (DV). See
Section 3.6.2.2 for an explanation of their uses.

3.3.2 User-Defined Symbols and Macro Names

You can use symbols that you define as labels or you can equate them to
a specific value by a direct assignment statement (see Section 3.8). These
symbols can also be used in any expression (see Section 3.5).

The following rules govern the creation of user-defined symbols:

¢ User-defined symbols can be composed of alphanumeric characters,
underscores (_), dollar signs ($), and periods (.). Any other character
terminates the symbol.

¢ The first character of a symbol must not be a number.

3-5




Components of MACRO Source Statements
3.3 Symbols

* The symbol must be no more than 31 characters long and must be
unique.

In addition, by Digital convention:

¢ The dollar sign ($) is reserved for names defined by Digital. This
convention ensures that a user-defined name (which does not have a
dollar sign) will not conflict with a Digital-defined name (which does
have a dollar sign).

* Do not use the period (.) in any global symbol name (see Section 3.3.3)
because languages, such as FORTRAN, do not allow periods in symbol
names.

Macro names follow the same rules and conventions as user-defined
symbols. (See the description of the .MACRO directive in Chapter 6

for more information on macro names.) User-defined symbols and macro
names do not conflict; that is, the same name can be used for a user-
defined symbol and a macro. To avoid confusion, give the symbols and
macros that you define different names.

3.3.3 Determining Symbol Values

The value of a symbol depends on its use in the program. VAX MACRO
uses a different method to determine the values of symbols in the operator
field than it uses to determine the values of symbols in the operand field.

A symbol in the operator field can be either a permanent symbol or
a macro name. VAX MACRO searches for a symbol definition in the
following order:

1 Previously defined macro names

2 User-defined opcode (see the .OPDEF description in Chapter 6)

3 Permanent symbols (instructions and directives)

4 Macro libraries

This search order allows permanent symbols to be redefined as macro

names. If a symbol in the operator field is not defined as a macro or a
permanent symbol, the assembler displays an error message.

A symbol in the operand field must be either a user-defined symbol or a
register name.

User-defined symbols can be either local (internal) symbols or global
(external) symbols. Whether symbols are local or global depends on their
use in the source program.

A local symbol can be referenced only in the module in which it is defined.
If local symbols with the same names are defined in different modules, the
symbols are completely independent. The definition of a global symbol,
however, can be referenced from any module in the program.

VAX MACRO treats all symbols that you define as local unless you
explicitly declared them to be global by doing any one of the following:

¢ Use the double colon (::) in defining a label (see Section 2.1).
3-6




3.4

Components of MACRO Source Statements
3.3 Symbols

e Use the double equal sign (==) in a direct assignment statement (see
Section 3.8).

e Use the .GLOBAL, .ENTRY, or .WEAK directive (see Chapter 6).

When your code references a symbol within the module in which it is
defined, VAX MACRO considers the reference internal. When your code
references a symbol within a module in which it is not defined, VAX
MACRO considers the reference external (that is, the symbol is defined
externally in another module). You can use the .DISABLE directive to
make references to symbols not defined in the current module illegal.
In this case, you must use the .EXTERNAL directive to specify that the
reference is an external reference. See Chapter 6 for descriptions of the
.DISABLE and .EXTERNAL directives.

Local Labels

Use local labels to identify addresses within a block of source code.

Format
nn$

nn
A decimal integer in the range of 1 to 65535.

Use local labels in the same way as you use the symbol labels that you
define, with the following differences:

e Local labels cannot be referenced outside the block of source code in
which they appear.

¢ Local labels can be reused in another block of source code.

¢ Local labels do not appear in the symbol tables and thus cannot be
accessed by the VAX Symbolic Debugger.

¢ Local labels cannot be used in the .END directive (see Chapter 6).

By convention, local labels are positioned like statement labels: left-
justified in the source text. Although local labels can appear in the
program in any order, by convention, the local labels in any block of source
code should be in numeric order.

Local labels are useful as branch addresses when you use the address
only within the block. You can use local labels to distinguish between
addresses that are referenced only in a small block of code and addresses
that are referenced elsewhere in the module. A disadvantage of local
labels is that their numeric names cannot provide any indication of their
purpose. Consequently, you should not use local labels to label sequences
of statements that are logically unrelated; user-defined symbols should be
used instead.

Digital recommends that users create local labels only in the range of 1$
to 29999% because the assembler automatically creates local labels in the
range of 30000$ to 65535% for use in macros (see Section 4.7).

3-7




Components of MACRO Source Statements
3.4 Local Labels

RPSUB:

108:

COMP :

108$:

208:

ENTR1:

ENTR2:

10§:

205:

NEXT:

MOVL
SUBL2
BGTR
ADDL2
MOVL
CLRL
CMPL
BGTR
SUBL
INCL
BRB
MOVL
BRW

.ENABLE
POPR
ADDL3
BRB

SUBL2
SUBL2
BGTR
INCL
BRB
DECL

The local label block in which a local label is valid is delimited by the
following statements:

* A user-defined label
* A PSECT directive (see Chapter 6)

¢ The .ENABLE and .DISABLE directives (see Chapter 6), which can
extend a local label block beyond user-defined labels and .PSECT

directives

A local label block is usually delimited by two user-defined labels.
However, the . ENABLE LOCAL_BLOCK directive starts a local block
that is terminated only by one of the following:

e A second .ENABLE LOCAL_BLOCK directive

e A DISABLE LOCAL_BLOCK directive followed by a user-defined label
or a .PSECT directive

Although local label blocks can extend from one program section to
another, Digital recommends that local labels in one program section
not be referenced from another program section. User-defined symbols
should be used instead.

Local labels can be preserved for future reference with the context of the
program section in which they are defined; see the descriptions of the
.SAVE_PSECT [LOCAL_BLOCK] directive and the . RESTORE_PSECT
directive in Chapter 6.

An example showing the use of local labels follows:

AMOUNT, RO
DELTA, RO
105
DELTA, RO
MAX,R1
R2

RO, R1
205

INCR, RO
R2

103

R2, COUNT
TEST

LOCAL_BLOCK
#°M<RO,R1,R2>
RO,R1,R3

108

R2,R3
R2,R3
208
RO
NEXT
RO

.DISABLE LOCAL_BLOCK

CLRL

R4

Start local label block

; Define local label 10$

; Conditional branch to local label
; Executed when RO not > 0

; End previous local label

block and start new one

; Define new local label 108

Conditional branch to local label

; Executed when RO not > R1

; Unconditional branch to local label
; Define local label
; Unconditional branch to user-defined label

Start local label block that
will not be terminated
by a user-defined label

; Branch to local label that appears

after a user-defined label
Does not start a new local label block
Define local label
Conditional branch to local label
Executed when R2 not > R3
Unconditional branch to user-defined label
Define local label
Directive followed by user-defined
label terminates local label block




Components of MACRO Source Statements
3.5 Terms and Expressions

3.5 Terms and Expressions
A term can be any of the following:
¢ A number
¢ A symbol
* The current location counter (see Section 3.9)
¢ A textual operator followed by text (see Section 3.6.2)

e Any of the previously noted items preceded by a unary operator (see
Section 3.6)

VAX MACRO evaluates terms as longword (4-byte) values. If you use an
undefined symbol as a term, the linker determines the value of the term.
The current location counter (.) has the value of the location counter at

the start of the current operand.

Expressions are combinations of terms joined by binary operators (see
Section 3.7) and evaluated as longword (4-byte) values. VAX MACRO
evaluates expressions from left to right with no operator precedence
rules. However, angle brackets (<>) can be used to change the order

of evaluation. Any part of an expression that is enclosed in angle brackets
is first evaluated to a single value, which is then used in evaluating the
complete expression. For example, the expressions A*B+C and A*<B+C>
are different. In the first case, A and B are multiplied and then C added
to the product. In the second case, B and C are added and the sum is
multiplied by A. Angle brackets can also be used to apply a unary operator
to an entire expression, such as —<A+B>.

If an arithmetic expression is continued on another line, the listing file
will not show the continued line. For example:

.WORD <DATAl’S$"XFF@8+~-
89>

You must use /LIST/SHOW=EXPANSION to show the continuation line.

VAX MACRO considers unary operators part of a term and thus, performs
the action indicated by a unary operator before it performs the action
indicated by any binary operator.

Expressions fall into three categories: relocatable, absolute, and external
(global), as follows:

¢ An expression is relocatable if its value is fixed relative to the start of
the program section in which it appears. The current location counter
is relocatable in a relocatable program section.

* An expression is absolute if its value is an assembly-time constant. An
expression whose terms are all numbers is absolute. An expression
that consists of a relocatable term minus another relocatable term
from the same program section is absolute, since such an expression
reduces to an assembly-time constant.

* An expression is external if it contains one or more symbols that are
not defined in the current module.

3-9




Components of MACRO Source Statements
3.5 Terms and Expressions

Any type of expression can be used in most MACRO statements, but
restrictions are placed on expressions used in the following:

e _ALIGN alignment directives

e _BLKx storage allocation directives

¢ _IF and .IIF conditional assembly block directives
e _REPEAT repeat block directives

¢ _OPDEF opcode definition directives

e _ENTRY entry point directives

e _BYTE, .LONG, .WORD, .SIGNED_BYTE, and .SIGNED_WORD
directive repetition factors

e Direct assignment statements (see Section 3.8)

See Chapter 6 for descriptions of the directives listed in the preceding list.

Expressions used in these directives and in direct assignment statements
can contain only symbols that have been previously defined in the
current module. They cannot contain either external symbols or symbols
defined later in the current module. In addition, the expressions in these
directives must be absolute. Expressions in direct assignment statements
can be relocatable.

An example showing the use of expressions follows.

A = 2*100
.BLKB A+50

2*100 is an absolute expression
A+50 is an absolute expression and
contains no undefined symbols

LAB is relocatable
LAB+<A/2> is a relocatable

;

;

;
LAB: .BLKW A ;
;
; expression and contains no
;
;
’
r
’
r
’

HALF = LAB+<A/2>

undefined symbols
LAB2-LAB is an absolute expression
and contains no undefined symbols
but contains the symbol LAB3
that is defined later in this module
; TST+LAB+2 is an external expression
because TST is an external symbol

LAB2: .BLKB LAB2-LAB

LAB3: .WORD TST+LAB+2

3.6 Unary Operators

A unary operator modifies a term or an expression and indicates an action
to be performed on that term or expression. Expressions modified by unary
operators must be enclosed in angle brackets. You can use unary operators
to indicate whether a term or expression is positive or negative. If unary
plus or minus is not specified, the default value is assumed to be plus.

In addition, unary operators perform radix conversion, textual conversion
(including ASCII conversion), and numeric control operations, as described
in the following sections. Table 3—3 summarizes the unary operators.

3-10




Components of MACRO Source Statements
3.6 Unary Operators

Table 3—3 Unary Operators

Unary

Operator Operator Name Example Operation

+ Plus sign +A Results in the positive
value of A

— Minus sign -A Results in the negative
(two’s complement)
value of A

B Binary AB11000111 Specifies that 11000111
is a binary number

D Decimal AD127 Specifies that 127 is a
decimal number

A0 Octal 034 Specifies that 34 is an
octal number

AX Hexadecimal AXFCF9 Specifies that FCF9 is a
hexadecimal number

A ASCII AA/ABC/ Produces an ASCII
string; the characters
between the matching
delimiters are converted
to ASClI representation

‘M Register mask #*M<R3,R4,R5> Specifies the registers
R3, R4, and R5 in the
register mask

rF Floating-point AF3.0 Specifies that 3.0 is a
floating-point number

AC Complement ArC24 Produces the one’s

complement value of 24
(decimal)

More than one unary operator can be applied to a single term or to an

expression enclosed in angle brackets. For example:

—+-A

This construct is equivalent to:

—<+<=-A>>

3.6.1

Radix Control Operators

VAX MACRO accepts terms or expressions in four different radixes:
binary, decimal, octal, and hexadecimal. The default radix is decimal.
Expressions modified by radix control operators must be enclosed in angle

brackets.

Formats

ABnn
ADnn
AOnn
AXnn

3-11




Components of MACRO Source Statements
3.6 Unary Operators

nn
A string of characters that is legal in the specified radix. The following are
the legal characters for each radix:

Format Radix Name Legal Characters

ABnn Binary 0and 1

ADnn Decimal Oto9

AOnn Octal Oto7

AXnn Hexadecimal Oto9and Ato F

Radix control operators can be included in the source program anywhere
a numeric value is legal. A radix control operator affects only the term or
expression immediately following it, causing that term or expression to be
evaluated in the specified radix.

For example:

.WORD ~B00001101 ; Binary radix

.WORD ~D123 ; Decimal radix (default)

.WORD ~047 ; Octal radix

.WORD <A+7013> ; 13 is in octal radix

.LONG ~"X<F1C3+FFFFF-20> ; All numbers in expression
; are in hexadecimal radix

The circumflex () cannot be separated from the B, D, O, or X that follows
it, but the entire radix control operator can be separated by spaces and
tabs from the term or expression that is to be evaluated in that radix.

The default decimal operator is needed only within an expression that
has another radix control operator. In the following example, “16” is
interpreted as a decimal number because it is preceded by the decimal
operator D even though the “16” is in an expression prefixed by the octal
radix control operator.

. LONG ~0<10000 + 100 + ~D16>

3.6.2 Textual Operators

The textual operators are the ASCII operator (*A) and the register mask
operator (AM).

3.6.2.1 ASCII Operator
The ASCII operator converts a string of printable characters to their
8-bit ASCII values and stores them 1 character to a byte. The string of
characters must be enclosed in a pair of matching delimiters.

The delimiters can be any printable character except the space, tab, or
semicolon. Use nonalphanumeric characters to avoid confusion.

Format
AAstring

3-12




Components of MACRO Source Statements
3.6 Unary Operators

string
A delimited ASCII string from 1 to 16 characters long.

The delimited ASCII string must not be larger than the data type of the

operand. For example, if the A operator occurs in an operand in a Move
Word (MOVW) instruction (the data type is a word), the delimited string
cannot be more than 2 characters.

For example:

.QUAD ~A%1234/678%
MOVL #~A/ABCD/, RO

Generates 8 bytes of ASCII data
Moves characters ABCD
into RO right justified with
"A" in low-order byte and "D"
in high-order byte
Compares X and Y as ASCIT
characters with contents of low
order 2 bytes of RO
Moves ASCII characters AB into
RO; "A" in low-order byte; "B" in
next; and zero the 2 high-order bytes

CMPW #~A/XY/,RO

MOVL #~A/AB/,RO

Ne i Ne N Ne Ne Se Ne Ne Ne N

3.6.2.2 Register Mask Operator
The register mask operator converts a register name or a list of register
names enclosed in angle brackets into a 1- or 2-byte register mask.
The register mask is used by the Push Registers (PUSHR) and Pop
Registers (POPR) instructions and the .ENTRY and .MASK directives
(see Chapter 6).

Formats

AMreg-name
M<reg-name-list>

reg-name

One of the register names or the DV or IV arithmetic trap-enable
specifiers.

reg-name-list
A list of register names and the DV and IV arithmetic trap-enable
specifiers, separated by commas.

The register mask operator sets a bit in the register mask for every
register name or arithmetic trap enable specified in the list. The bits
corresponding to each register name and arithmetic trap-enable specifier

follow.

Arithmetic Trap
Register Name Enable Bits
RO to R11 0to 11
R12 or AP 12
FP 13
SP v 14

DV 15

3-13




Components of MACRO Source Statements
3.6 Unary Operators

When the POPR or PUSHR instruction uses the register mask operator,
RO to R11, R12 or AP, FP, and SP can be specified. You cannot specify the
PC register name and the IV and DV arithmetic trap-enable specifiers.

When the .ENTRY or .MASK directive uses the register mask operator,
you can specify R2 to R11 and the IV and DV arithmetic trap-enable
specifiers. However, you cannot specify RO, R1, FP, SP, and PC. IV sets the
integer overflow trap, and DV sets the decimal string overflow trap.

The arithmetic trap-enable specifiers are described in Chapter 8.

For example:

.ENTRY RT1, "M<R3,R4,R5,R6,IV> ; Save registers R3, R4,
; R5, and R6 and set the
; integer overflow trap
PUSHR #”M<RO,R1,R2,R3> ; Save registers RO, R1,
; R2, and R3
POPR #~M<RO,R1,R2,R3> ; Restore registers RO, RI1,
; R2, and R3

3.6.3 Numeric Control Operators

The numeric control operators are the floating-point operator (*F) and the
complement operator (AC). The use of the numeric control operators is
explained in Section 3.6.3.1 and Section 3.6.3.2.

3.6.3.1 Floating-Point Operator
The floating-point operator accepts a floating-point number and converts it
to its internal representation (a 4-byte value). This value can be used in
any expression. VAX MACRO does not perform floating-point expression
evaluation.

Format
AFliteral

literal
A floating-point number (see Section 3.2.2).

The floating-point operator is useful because it allows a floating-point
number in an instruction that accepts integers.

For example:

MOVL #"F3.7,R0 ; NOTE: the recommended instruction
; to move this floating-point
MOVFEF #3.7,R0 ; number is the MOVF instruction

3.6.3.2 Complement Operator
The complement operator produces the one’s complement of the specified
value.

Format

ACterm

3-14




Components of MACRO Source Statements
3.6 Unary Operators

term
Any term or expression. If an expression is specified, it must be enclosed
in angle brackets.

VAX MACRO evaluates the term or expression as a 4-byte value before
complementing it.

For example:

.LONG ~“C*XFF
. LONG ~C25

; Produces FFFFFFO00 (hex)
; Produces complement of
; 25 (dec) which is

; FFFFFFE6 (hex)

3.7 Binary Operators

In contrast to unary operators, binary operators specify actions to be
performed on two terms or expressions. Expressions must be enclosed in
angle brackets. Table 3—4 summarizes the binary operators.

Table 3-4 Binary Operators

Binary

Operator Operator Name Example Operation

+ Plus sign A+B Addition

- Minus sign A-B Subtraction

* Asterisk A'B Multiplication

/ Slash A/B Division

@ At sign A@B Arithmetic shift

& Ampersand A&B Logical AND

! Exclamation point AB Logical inclusive OR
\ Backslash A\B Logical exclusive OR

All binary operators have equal priority. Terms or expressions can be
grouped for evaluation by enclosing them in angle brackets. The enclosed
terms and expressions are evaluated first, and remaining operations are
performed from left to right. For example:

. LONG 1+2%*3 ; Equals 9
. LONG 1+<2*3> ; Equals 7

Note that a 4-byte result is returned from all binary operations. If you use
a 1-byte or 2-byte operand, the result is the low-order bytes of the 4-byte
result. VAX MACRO displays an error message if the truncation causes a
loss of significance.

The following sections describe the arithmetic shift, logical AND, logical
inclusive OR, and logical exclusive OR operators.

3-15




Components of MACRO Source Statements
3.7 Binary Operators

3.7.1  Arithmetic Shift Operator

You use the arithmetic shift operator (@) to perform left and right
arithmetic shifts of arithmetic quantities. The first argument is shifted
left or right by the number of bit positions that you specify in the second
argument. If the second argument is positive, the first argument is shifted
left; if the second argument is negative, the first argument is shifted right.
When the first argument is shifted left, the low-order bits are set to zero.
When the first argument is shifted right, the high-order bits are set to the
value of the original high-order bit (the sign bit).

For example:

. LONG ~“B101@4 ; Yields 1010000 (binary)
.LONG 1@2 ; Yields 100 (binary)
A =4
.LONG 1A ; Yields 10000 (binary)
. LONG ~“X1234Q@-A ; Yields 123 (hex)
MOVL #<~B1100000@-5>, R0 ; Yields 11 (binary)

3.7.2 Logical AND Operator

The logical AND operator ( & ) takes the logical AND of two operands.
For example:

A = ~B1010

B =

~B1100
.LONG A&B ; Yields 1000 (binary)

3.7.3 Logical Inclusive OR Operator

The logical inclusive OR operator (!) takes the logical inclusive OR of two
operands.

For example:

A = ~B1010
B = ~B1100
.LONG A!B ; Yields 1110 (binary)

3.7.4  Logical Exclusive OR Operator

3-16

The logical exclusive OR operator (\ ) takes the logical exclusive OR of two
arguments.

For example:

A = "B1l010
B = "B1100
. LONG A\B ; Yields 0110 (binary)




Components of MACRO Source Statements
3.8 Direct Assignment Statements

3.8 Direct Assignment Statements

A direct assignment statement equates a symbol to a specific value. Unlike
a symbol that you use as a label, you can redefine a symbol defined with a
direct assignment statement as many times as you want.

Formats

symbol=expression
symbol==expression

symbol
A user-defined symbol.

expression

An expression that does not contain any undefined symbols (see
Section 3.5).

The format with a single equal sign (=) defines a local symbol and
the format with a double equal sign (==) defines a global symbol. See
Section 3.3.3 for more information about local and global symbols.

The following three syntactic rules apply to direct assignment statements:

e An equal sign (=) or double equal sign (= =) must separate the symbol
from the expression which defines its value. Spaces preceding or
following the direct assignment operators have no significance in the
resulting value.

e Only one symbol can be defined in a single direct assignment
statement.

* A direct assignment statement can be followed only by a comment
field.

By Digital convention, the symbol in a direct assignment statement is
placed in the label field.

For example:

A == 1 ; The symbol ’'A’ is globally
; equated to the value 1

B = A@5 ; The symbol ’'B’ is equated
; to 1@5 or 20 (hex)

C = 127*10 ; The symbol 'C’ is equated
; to 1270 (dec)

D = ~X100/"X10 ; The symbol ‘D’ is equated
; to 10 (hex)

3.9 Current Location Counter

The symbol for the current location counter, the period (.), always has the
value of the address of the current byte. VAX MACRO sets the current
location counter to zero at the beginning of the assembly and at the
beginning of each new program section.

3-17




Components of MACRO Source Statements
3.9 Current Location Counter

3-18

Every VAX MACRO source statement that allocates memory in the object
module increments the value of the current location counter by the number
of bytes allocated. For example, the directive .LONG 0 increments the
current location counter by 4. However, with the exception of the special
form described below, a direct assignment statement does not increase the
current location counter because no memory is allocated.

The current location counter can be explicitly set by a special form of
the direct assignment statement. The location counter can be either
incremented or decremented. This method of setting the location counter
is often useful when defining data structures. Data storage areas should
not be reserved by explicitly setting the location counter; use the .BLKx
directives (see Chapter 6).

Format
.=expression

expression

An expression that does not contain any undefined symbols (see
Section 3.5).

In a relocatable program section, the expression must be relocatable; that
is, the expression must be relative to an address in the current program
section. It may be relative to the current location counter.

For example:
.= .+40 ; Moves location counter forward

When a program section that you defined in the current module is
continued, the current location counter is set to the last value of the
current location counter in that program section.

When you use the current location counter in the operand field of an
instruction, the current location counter has the value of the address of
that operand; it does not have the value of the address of the beginning of
the instruction. For this reason, you would not normally use the current
location counter as a part of the operand specifier.




4 Macro Arguments and String Operators

By using macros, you can use a single line to insert a sequence of source
lines into a program.

A macro definition contains the source lines of the macro. The macro
definition can optionally have formal arguments. These formal arguments
can be used throughout the sequence of source lines. Later, the formal
arguments are replaced by the actual arguments in the macro call.

The macro call consists of the macro name optionally followed by actual
arguments. The assembler replaces the line containing the macro call
with the source lines in the macro definition. It replaces any occurrences
of formal arguments in the macro definition with the actual arguments
specified in the macro call. This process is called the macro expansion.

The macro directives (described in Chapter 6) provide facilities for
performing eight categories of functions. Table 6-2 lists these categories
and the directives that fall under them.

By default, macro expansions are not printed in the assembly listing. They
are printed only when the .SHOW directive (see description in Chapter 6)
or the /SHOW qualifier (described in the VMS DCL Dictionary) specifies
the EXPANSIONS argument. In the examples in this chapter, the macro
expansions are listed as they would appear if SHOW EXPANSIONS was
specified in the source file or /SHOW=EXPANSIONS was specified in the
MACRO command string.

The remainder of this chapter describes macro arguments, created local
labels, and the macro string operators.

4.1 Arguments in Macros

Macros have two types of arguments: actual and formal. Actual
arguments are the strings given in the macro call after the name of the
macro. Formal arguments are specified by name in the macro definition;
that is, after the macro name in the MACRO directive. Actual arguments
in macro calls and formal arguments in macro definitions can be separated
by commas (, ), tabs, or spaces.

The number of actual arguments in the macro call can be less than or
equal to the number of formal arguments in the macro definition. If
the number of actual arguments is greater than the number of formal
arguments, the assembler displays an error message.

Formal and actual arguments normally maintain a strict positional
relationship. That is, the first actual argument in a macro call replaces
all occurrences of the first formal argument in the macro definition. This
strict positional relationship can be overridden by the use of keyword
arguments (see Section 4.3).

4-1




4.2

Macro Arguments and String Operators

4.1 Arguments in Macros

An example of a macro definition using formal arguments follows:

.MACRO STORE ARG1l,ARG2,ARG3

.LONG ARG1
.WORD ARG3
.BYTE ARG2
.ENDM STORE

; ARGl is first argument
; ARG3 1is third argument
; ARG2 is second argument

The following two examples show possible calls and expansions of the

macro defined previously:

STORE 3
. LONG 3
.WORD 1
.BYTE 2
STORE X,
#.LONG X
# . WORD Z
#.BYTE X

; Macro call

; 3 is first argument
; 1 is third argument
; 2 is second argument

; Macro call
; X is first argument
; 2 is third argument
; X~Y is second argument

Default Values

Default values are values that are defined in the macro definition. They
are used when no value for a formal argument is specified in the macro

call.

Default values are specified in the .MACRO directive as follows:

formal-argument-name

default-value

An example of a macro definition specifying default values follows:

.MACRO STORE
.LONG ARG1
.WORD ARG3
.BYTE ARG2
.ENDM STORE

ARG1=12,ARG2=0, ARG3=1000

The following three examples show possible calls and expansions of the

macro defined previously:

STORE

.LONG 12
.WORD 1000
.BYTE 0
STORE 5, X
. LONG 12
.WORD X
.BYTE 5
STORE 1

. LONG 1
.WORD 1000
.BYTE 0

4-2

; No arguments supplied

; Last two arguments supplied

; First argument supplied




Macro Arguments and String Operators
4.3 Keyword Arguments

4.3 Keyword Arguments

Keyword arguments allow a macro call to specify the arguments in any
order. The macro call must specify the same formal argument names that
appear in the macro definition. Keyword arguments are useful when a
macro definition has more formal arguments than need to be specified in
the call.

In any one macro call, the arguments should be either all positional
arguments or all keyword arguments. When positional and keyword
arguments are combined in a macro, only the positional arguments
correspond by position to the formal arguments; the keyword arguments
are not used. If a formal argument corresponds to both a positional
argument and a keyword argument, the argument that appears last in the
macro call overrides any other argument definition for the same argument.

For example, the following macro definition specifies three arguments:

.MACRO STORE ARG1, ARG2, ARG3
. LONG ARG1

.WORD ARG3

.BYTE ARG2Z

.ENDM STORE

The following macro call specifies keyword arguments:

STORE ARG3=27+5/4,ARG2=5, ARG1=SYMBL
. LONG SYMBL

.WORD 27+5/4

.BYTE 5

Because the keywords are specified in the macro call, the arguments in
the macro call need not be given in the order they were listed in the macro
definition.

4.4 String Arguments

If an actual argument is a string containing characters that the assembler
interprets as separators (such as a tab, space, or comma), the string must
be enclosed by delimiters. String delimiters are usually paired angle
brackets (<>).

The assembler also interprets any character after an initial circumflex (#)
as a delimiter. To pass an angle bracket as part of a string, you can use
the circumflex form of the delimiter.

The following are examples of delimited macro arguments:

<HAVE THE SUPPLIES RUN OUT?>

<LAST NAME, FIRST NAME>

<LAB: CLRL R4>

~%ARGUMENT IS <LAST,FIRST> FOR CALL%
~?EXPRESSION IS <5+3>*<4+2>?

In the last two examples, the initial circamflex indicates that the percent
sign (%) and question mark (?) are the delimiters. Note that only the
left-hand delimiter is preceded by a circumflex.

4-3




Macro Arguments and String Operators
4.4 String Arguments

The assembler interprets a string argument enclosed by delimiters as one
actual argument and associates it with one formal argument. If a string
argument that contains separator characters is not enclosed by delimiters,
the assembler interprets it as successive actual arguments and associates
it with successive formal arguments.

For example, the following macro call has one formal argument:

.MACRO REPEAT STRNG
.ASCII /STRNG/
.ASCII /STRNG/
.ENDM  REPEAT

The following two macro calls demonstrate actual arguments with and
without delimiters:

REPEAT <A B C D E>
.ASCII /A BCDE/
.ASCII /A BCDE/

REPEAT A B C D E
SMACRC-E-TOOMNYARGS, Too many arguments in macro call

Note that the assembler interpreted the second macro call as having five
actual arguments instead of one actual argument with spaces.

When a macro is called, the assembler removes any delimiters around a
string before associating it with the formal arguments.

If a string contains a semicolon (;), the string must be enclosed by
delimiters, or the semicolon will mark the start of the comment field.

Strings enclosed by delimiters cannot be continued on a new line.

To pass a number containing a radix or unary operator (for example,
~XF19), the entire argument must be enclosed by delimiters, or the
assembler will interpret the radix operator as a delimiter.

The following are macro arguments that are enclosed in delimiters because
they contain radix operators:

<"XF19>
<~B01100011>
<"F1l.5>

Macros can be nested; that is, a macro definition can contain a call to
another macro. If, within a macro definition, another macro is called and
is passed a string argument, you must delimit the argument so that the
entire string is passed to the second macro as one argument.

The following macro definition contains a call to the REPEAT macro
defined in an earlier example:

-MACRO CNTRPT LAB1,LAB2,STR_ARG
LABL: .BYTE LAB2-LABl-1 ; Length of 2*string
REPEAT <STR_ARG> ; Call REPEAT macro
LAB2:
.ENDM CNTRPT




Macro Arguments and String Operators
4.4 String Arguments

Note that the argument in the call to REPEAT is enclosed in angle
brackets even though it does not contain any separator characters.
The argument is thus delimited because it is a formal argument in the
definition of the macro CNTRPT and will be replaced with an actual
argument that may contain separator characters.

The following example calls the macro CNTRPT, which in turn calls the

macro REPEAT:
CNTRPT ST,FIN,<LEARN YOUR ABC’S>

ST: .BYTE FIN-ST-1 ; Length of 2*string
REPEAT <LEARN YOUR ABC’S> ; Call REPEAT macro

.ASCII /LEARN YOUR ABC’S/
.ASCII /LEARN YOUR ABC’S/
FIN:

An alternative method to pass string arguments in nested macros is to
enclose the macro argument in nested delimiters. Do not use delimiters
around the macro calls in the macro definitions. Each time you use the
delimited argument in a macro call, the assembler removes the outermost
pair of delimiters before associating it with the formal argument. This
method is not recommended because it requires that you know how deeply
a macro is nested.

The following macro definition also contains a call to the REPEAT macro:

.MACRO CNTRPT2 LAB1l,LAB2,STR_ARG
LABl: .BYTE LAB2-LAB1-1 ; Length of 2*string
REPEAT STR_ARG ; Call REPEAT macro
LAB2:
.ENDM CNTRPT2

Note that the argument in the call to REPEAT is not enclosed in angle
brackets.

The following example calls the macro CNTRPT2:

CNTRPT2 BEG, TERM, <<MIND YOUR P’S AND Q’S>>

BEG: .BYTE TERM-BEG-1 ; Length of 2*string
REPEAT <MIND YOUR P’S AND Q’S> ; Call REPEAT macro
.ASCII /MIND YOUR P’S AND Q’S/
.ASCII /MIND YOUR P’S AND Q’S/

TERM:

Note that even though the call to REPEAT in the macro definition is not
enclosed in delimiters, the call in the expansion is enclosed because the
call to CNTRPT2 contains nested delimiters around the string argument.

4.5 Argument Concatenation

The argument concatenation operator, the apostrophe (’), concatenates a
macro argument with some constant text. Apostrophes can either precede
or follow a formal argument name in the macro source.

If an apostrophe precedes the argument name, the text before the
apostrophe is concatenated with the actual argument when the macro

is expanded. For example, if ARG1 is a formal argument associated with
the actual argument TEST, ABCDE’ ARG1 is expanded to ABCDETEST.




Macro Arguments and String Operators
4.5 Argument Concatenation

If an apostrophe follows the formal argument name, the actual argument
is concatenated with the text that follows the apostrophe when the macro
is expanded. For example, if ARG2 is a formal argument associated with
the actual argument MOV, ARG2' L is expanded to MOVL.

Note that the apostrophe itself does not appear in the macro expansion.

To concatenate two arguments, separate the two formal arguments with
two successive apostrophes. Two apostrophes are needed because each
concatenation operation discards an apostrophe from the expansion.
An example of a macro definition that uses concatenation follows:
.MACRO CONCAT  INST,SIZE,NUM
TEST’ NUM’ :
INST’’SIZE RO, R’ NUM
TEST’ NUM’ X:
.ENDM  CONCAT

Note that two successive apostrophes are used when concatenating the two
formal arguments INST and SIZE.

An example of a macro call and expansion follows:

CONCAT MOV,L,5

TESTS5:
MOVL RO,R5
TESTS5X:
4.6 Passing Numeric Values of Symbols

4-6

When a symbol is specified as an actual argument, the name of the symbol,
not the numeric value of the symbol, is passed to the macro. The value of
the symbol can be passed by inserting a backslash (\) before the symbol
in the macro call. The assembler passes the characters representing the
decimal value of the symbol to the macro. For example, if the symbol
COUNT has a value of 2 and the actual argument specified is \ COUNT,
the assembler passes the string “2” to the macro; it does not pass the name
of the symbol, “COUNT".

Passing numeric values of symbols is especially useful with the apostrophe
(’) concatenation operator for creating new symbols.

An example of a macro definition for passing numeric values of symbols
follows:

-MACRO TESTDEF, TESTNO, ENTRYMASK="?"M<>?
.ENTRY TEST'TESTNO, ENTRYMASK ; Uses arg concatenation
.ENDM TESTDEF

The following example shows a possible call and expansion of the macro
defined previously:

2

TESTDEF \COUNT

.ENTRY TESTZ2, "M<> ; Uses arg concatenation
COUNT = COUNT + 1

TESTDEF \COUNT, ~?"M<R3,R4>?

.ENTRY TEST3, "M<R3,R4> ; Uses arg concatenation

COUNT




Macro Arguments and String Operators
4.7 Created Local Labels

4.7 Created Local Labels

Local labels are often very useful in macros. Although you can create
a macro definition that specifies local labels within it, these local labels
might be duplicated elsewhere in the local label block possibly causing
errors. However, the assembler can create local labels in the macro
expansion that will not conflict with other local labels. These labels are
called created local labels.

Created local labels range from 30000$ to 65535%. Each time the
assembler creates a new local label, it increments the numeric part of
the label name by 1. Consequently, no user-defined local labels should be
in the range of 30000$ to 65535$.

A created local label is specified by a question mark (?) in front of the
formal argument name. When the macro is expanded, the assembler
creates a new local label if the corresponding actual argument is blank. If
the corresponding actual argument is specified, the assembler substitutes
the actual argument for the formal argument. Created local symbols can
be used only in the first 31 formal arguments specified in the MACRO
directive.

Created local labels can be associated only with positional actual
arguments; created local labels cannot be associated with keyword actual
arguments.

The following example is a macro definition specifying a created local label:

.MACRO POSITIVE ARG1,?L1
TSTL ARGl
BGEQ Ll
MNEGL ARG1, ARGl
Ll: .ENDM POSITIVE

The following three calls and expansions of the macro defined previously
show both created local labels and a user-defined local label:

POSITIVE RO
TSTL RO
BGEQ 30000$
MNEGL  RO,RO
300005

POSITIVE COUNT
TSTL COUNT
BGEQ 300018
MNEGL COUNT, COUNT
30001$:

POSITIVE VALUE,10$

TSTL VALUE

BGEQ 10$

MNEGL VALUE, VALUE
10$:

4-7




Macro Arguments and String Operators
4.8 Macro String Operators

4.8 Macro String Operators
Following are the three macro string operators:
* %LENGTH
* 9%LOCATE
*  %EXTRACT

These operators perform string manipulations on macro arguments and
ASCII strings. They can be used only in macros and repeat blocks. The
following sections describe these operators and give their formats and
examples of their use.

4.8.1 %LENGTH Operator
Format
%LENGTH(string)

string
A macro argument or a delimited string. The string can be delimited by
angle brackets or a character preceded by a circumflex (see Section 4.4).

DESCRIPTION The %ZLENGTH operator returns the length of a string. For example, the
value of ZLENGTH(<ABCDE>) is 5.

EXAMPLES The macro definition is as follows:

.MACRO CHK_SIZE ARGl ; Macro checks if ARGl
. IF GREATER_ EQUAL $LENGTH (ARG1) -3 H is between 3 and
.IF LESS_THAN 6-%LENGTH (ARG1) ; 6 characters long
.ERROR ; Argument ARGl is greater than 6 characters
.ENDC ; If more than 6
.IF_FALSE ; If less than 3
.ERROR ; Argument ARGl is less than 3 characters
.ENDC ; Otherwise do nothing

.ENDM  CHK_SIZE

The macro calls and expansions of the macro defined previously are as

follows:
CHK_SIZE A ; Macro checks if A
.IF GREATER_EQUAL 1-3 H is between 3 and
.IF LESS_THAN 6-1 ; 6 characters long.

; Should be too short.
.ERROR ; Argument A is greater than 6 characters
.ENDC ; If more than 6
.IF FALSE ; If less than 3
$MACRO-E-GENERR, Generated ERROR: Argument A is less than 3 characters

.ENDC ; Otherwise do nothing

4-8




CHK_SIZE

Macro Arguments and String Operators
4.8 Macro String Operators

ABC Macro checks if ABC

.IF GREATER_EQUAL 3-3 ; is between 3 and

.IF LESS_THAN 6-3 ; 6 characters long.
H Should be ok.

.ERROR ; Argument ABC is greater than 6 characters

.ENDC ; If more than 6

.IF_FALSE ; If less than 3

.ERROR ; Argument ABC is less than 3 characters

.ENDC ; Otherwise do nothing

48.2 %LOCATE Operator

Format
%LOCATE(string1,string2 [,symbol})

Parameters

string1

A substring. The substring can be written either as a macro argument
or as a delimited string. The delimiters can be either angle brackets or a
character preceded by a circumflex.

string2
The string to be searched for the substring. The string can be written

either as a macro argument or as a delimited string. The delimiters can
be either angle brackets or a character preceded by a circumflex.

symbol

An optional symbol or decimal number that specifies the position in
string2 at which the assembler should start the search. If this argument
is omitted, the assembler starts the search at position zero (the beginning
of the string). The symbol must be an absolute symbol that has been
previously defined; the number must be an unsigned decimal number.
Expressions and radix operators are not allowed.

DESCRIPTION

The %LOCATE operator locates a substring within a string. If %LOCATE
finds a match of the substring, it returns the character position of the
first character of the match in the string. For example, the value of
%LOCATE(<D>,<ABCDEF>) is 3. Note that the first character position
of a string is zero. If %LOCATE does not find a match, it returns

a value equal to the length of the string. For example, the value of
%LOCATE(<Z>,<ABCDEF>) is 6.

The %LOCATE operator returns a numeric value that can be used in any
expression.

4-9




Macro Arguments and String Operators
4.8 Macro String Operators

EXAMPLES

The macro definition is as follows:

m .MACRO BIT NAME ARGl ; Checks if ARGl is in 1list
.IF EQUAL %$LOCATE (ARG1, <DELDFWDLTDMOESC>) ~15
; If it is not, print error
.ERROR ; ARGl is an invalid bit name
.ENDC ; If it is, do nothing
.ENDM BIT NAME

The macro calls and expansions of the macro defined previously are as

follows:
BIT NAME ESC ; Is ESC in list
.IF EQUAL 12-15 ; If it is not, print error
.ERROR ; ESC is an invalid bit name
.ENDC ; If it is, do nothing
BIT NAME FOO ; Not in list

.IF EQUAL 15-15
; If it is not, print error
$MACRO-E-GENERR, Generated ERROR: FOO is an invalid bit name

.ENDC ; If it is, do nothing

Note: If the optional symbol is specified, the search begins at the
character position of string2 specified by the symbol. For example,
the value of %2LOCATE(<ACE>,<SPACE_HOLDER>,5) is 12 because
there is no match after the fifth character position.

4.8.3 %EXTRACT Operator

Format
%EXTRACT(symbol1,symbol2,string)

Parameters

symbol1

A symbol or decimal number that specifies the starting position of the

substring to be extracted. The symbol must be an absolute symbol that
has been previously defined; the number must be an unsigned decimal

number. Expressions and radix operators are not allowed.

symbol2

A symbol or decimal number that specifies the length of the substring

to be extracted. The symbol must be an absolute symbol that has been
previously defined; the number must be an unsigned decimal number.

Expressions and radix operators are not allowed.

string

A macro argument or a delimited string. The string can be delimited by
angle brackets or a character preceded by a circumflex.

4-10




Macro Arguments and String Operators
4.8 Macro String Operators

DESCRIPTION The %EXTRACT operator extracts a substring from a string. It returns

the substring that begins at the specified position and is of the specified
length. For example, the value of %#EXTRACT(2,3,<ABCDEF>) is CDE.
Note that the first character in a string is in position zero.

EXAMPLES

The macro definition is as follows:

.MACRO RESERVE ARGl
XX = %$LOCATE (<=>, ARG1)
.IF EQUAL XX-%LENGTH (ARG1)
.WARN ; Incorrect format for macro call - ARGl
.MEXIT
.ENDC

$EXTRACT (0, XX, ARG1) : :

XX = XX+1
.BLKB $EXTRACT (XX, 3, ARG1)
.ENDM RESERVE

The macro calls and expansions of the macro defined previously are as
follows:

RESERVE FOOBAR
XX = 6
.IF EQUAL XX-6
$MACRO-W-GENWRN, Generated WARNING: Incorrect format for macro call - FOOBAR

.MEXIT

RESERVE LOCATION=12

XX = 8
.IF EQUAL XX-11
. WARN ; Incorrect format for macro call - LOCATION=12
.MEXIT
.ENDC
LOCATION: :
XX = XX+1
.BLKB 12

Note: If the starting position specified is equal to or greater than the
length of the string, or if the length specified is zero, ZEXTRACT
returns a null string (a string of zero characters).

4-11







5 VAX MACRO Addressing Modes

This section summarizes the VAX addressing modes and contains examples
of VAX MACRO statements that use these addressing modes. Table 5-1
summarizes the addressing modes. (Chapter 8 describes the addressing
mode formats in detail.)

The following are the four types of addressing modes:
¢ General register

¢ Program counter (PC)

¢ Index

¢ Branch

Although index mode is a general register mode, it is considered separate
because it can be used only in combination with another type of mode.

5.1 General Register Modes

The general register modes use registers RO to R12, AP (the same as R12),
FP, and SP.

The following are the eight general register modes:
¢ Register

¢ Register deferred

e Autoincrement

* Autoincrement deferred

e Autodecrement

¢ Displacement

e Displacement deferred

e Literal

5-1




VAX MACRO Addressing Modes
5.1 General Register Modes

Table 5—-1 Addressing Modes

Hex Can Be
Type Addressing Mode Format Value Description Indexed?
General Register Rn 5 Register contains the No
register operand.
Register deferred (Rn) 6 Register contains the address  Yes
of the operand.
Autoincrement (Rn)+ 8 Register contains the address Yes

of the operand; the processor
increments the register
contents by the size of the
operand data type.

Autoincrement @(Rn)+ 9 Register contains the address  Yes
deferred of the operand address; the
processor increments the
register contents by 4.

Autodecrement —(Rn) 7 The processor decrements Yes
the register contents by the
size of the operand data type;
the register then contains the
address of the operand.

Displacement dis(Rn) The sum of the contents Yes
BAdis(Rn) A of the register and the
WAdis(Rn) C displacement is the address
L dis(Rn) E of the operand; B*, WA,
and L* respectively indicate
byte, word, and longword
displacement.
Displacement @dis(Rn) The sum of the contents Yes
deferred @B~dis(Rn) B of the register and the
@Wndis(Rn) D displacement is the address
@L"dis(Rn) F of the operand address;
BA, WA, and L* respectively
indicate, byte, word, and
longword displacement.
Literal #literal The literal specified is the No
Shliteral 0-3 operand; the literal is stored

as a short literal.

Key:

Rn—Any general register RO to R12. Note that the AP, FP, or SP register can be used in place of Rn.

Rx—Any general register RO to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).

dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

(continued on next page)

5-2




Table 5-1 (Cont.) Addressing Modes

VAX MACRO Addressing Modes
5.1 General Register Modes

Type Addressing Mode

Format

Hex
Value

Description

Can Be
Indexed?

Program Relative

counter

Relative
deferred

Absolute

Immediate

General

address
Braddress
WA*address
L*address

@address
@B"address
@W"address
@L address

@#taddress

#literal
IAtliteral

G*address

mo >

mow

The address specified is
the address of the operand,;
the address is stored as a
displacement from the PC;
BA, WA, and L* respectively
indicate byte, word, and
longword displacement.

The address specified is the
address of the operand
address; the address
specified is stored as a
displacement from the PC;
BA, WA, and L* indicate
byte, word, and longword
displacement respectively.

The address specified is the
address of the operand; the
address specified is stored as
an absolute virtual address,
not as a displacement.

The literal specified is the
operand; the literal is stored
as a byte, word, longword, or
quadword.

The address specified is
the address of the operand;
if the address is defined

as relocatable, the linker
stores the address as a
displacement from the PC; if
the address is defined as an
absolute virtual address, the
linker stores the address as
an absolute value.

Yes

Yes

Yes

No

Yes

Key:

Rn—Any general register RO to R12. Note that the AP, FP, or SP register can be used in place of Rn.
Rx—Any general register RO to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).
dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

(continued on next page)

5-3




5.1.1

VAX MACRO Addressing Modes
5.1 General Register Modes

Table 5-1 (Cont.) Addressing Modes

Hex Can Be
Type Addressing Mode Format Value Description Indexed?
Index Index base-mode[Rx] 4 The base-mode specifies the  No

base address and the register
specifies the index; the sum
of the base address and the
product of the contents of Rx
and the size of the operand
data type is the address of
the operand; base mode can
be any addressing mode
except register, immediate,
literal, index, or branch.

Branch Branch address — The address specified is No
the operand; this address
is stored as a displacement
from the PC; branch mode
can only be used with the
branch instructions.

Key:

Rn—Any general register RO to R12. Note that the AP, FP, or SP register can be used in place of Rn.

Rx—Any general register RO to R12. Note that the AP, FP, or SP register can be used in place of Rx. Rx cannot be the
same as the Rn specified in the base-mode for certain base modes (see Section 5.3).

dis—An expression specifying a displacement.

address—An expression specifying an address.

literal—An expression, an integer constant, or a floating-point constant.

Register Mode

In register mode, the operand is the contents of the specified register,
except in the following cases:

* For quadword, D_floating, G_floating, or variable-bit field operands,
the operand is the contents of register n concatenated with the
contents of register n+1.

* For octaword and H_floating operands, the operand is the contents of
register n concatenated with the contents of registers n+1, n+2, and
n+3.

In each of these cases, the least significant bytes of the operand are in
register n and the most significant bytes are in the highest register used,
either n+1 or n+3.

The results of the operation are unpredictable if you use the PC in register
mode or if you use a large data type that extends the operand into the PC.




5.1.2

5.1.3

VAX MACRO Addressing Modes
5.1 General Register Modes

Formats

Rn
AP
FP
SP

n
A number in the range 0 to 12.

EXAMPLE

CLRB RO ; Clear lowest byte of RO
CLRQ R1 ; Clear R1 and R2

TSTW R10 ; Test lower word of R10
INCL R4 ; Add 1 to R4

Register Deferred Mode

In register deferred mode, the register contains the address of the operand.
Register deferred mode can be used with index mode (see Section 5.3).

Formats

(Rn)
(AP)
(FP)
(SP)

Parameters

n
A number in the range 0 to 12.

EXAMPLE

MOVAL LDATA,R3 Move address of LDATA to R3

CMPL (R3),RO ; Compare value at LDATA to RO
BEQL 108 ; If they are the same, ignore
CLRL (R3) ; Clear longword at LDATA

10%: MOVL (sp),R1 ; Copy top item of stack into Rl

MOVZBL (AP),R4 Get number of arguments in call

Autoincrement Mode

In autoincrement mode, the register contains the address of the operand.
After evaluating the operand address contained in the register, the
processor increments that address by the size of the operand data type.
The processor increments the contents of the register by 1, 2, 4, 8, or 16
for a byte, word, longword, quadword, or octaword operand, respectively.

Autoincrement mode can be used with index mode (see Section 5.3),
but the index register cannot be the same as the register specified in
autoincrement mode.

5-5




VAX MACRO Addressing Modes
5.1 General Register Modes

Formats

(Rn)+
(AP)+
(FP)+
(SP)+

Parameters
n

A number in the range 0 to 12.

EXAMPLE

MOVAL TABLE, R1
CLRQ (R1) +
CLRL (R1)+

MOVAB BYTARR, R2

INCB (R2) +
INCB (R2) +
XORL3 (R3)+, (R4) +, (R5) +

5.1.4 Autoincrement Deferred Mode

In autoincrement deferred mode, the register contains an address that
is the address of the operand address (a pointer to the operand). After
evaluating the operand address, the processor increments the contents of
the register by 4 (the size in bytes of an address).

5-6

NeoNe N N,

Ne o Ne Ne one N

Get address of TABLE.

Clear first and second longwords
and third longword in TABLE;
leave R1 pointing to TABLE+12.

Get address of BYTARR.
Increment first byte of BYTARR
and second.

Exclusive-OR the 2 longwords
whose addresses are stored in
R3 and R4 and store result in
address contained in R5; then
add 4 to R3, R4, and R5.

Autoincrement deferred mode can be used with index mode (see
Section 5.3), but the index register cannot be the same as the register
specified in autoincrement deferred mode.

Formats

@(Rn)+
@(AP)+
@(FP)+
@(SP)+

Parameters

n
A number in the range 0 to 12.




VAX MACRO Addressing Modes
5.1 General Register Modes

EXAMPLE

MOVAL PNTLIS,R2 ; Get address of pointer list.

CLRQ @ (R2)+ ; Clear quadword pointed to by
; first absolute address in PNTLIS;
; then add 4 to R2.

CLRB Q(R2)+ : Clear byte pointed to by second
; absolute address in PNTLIS
; then add 4 to R2.

MOVL R10,@(RO) + ; Move R10 to location whose address
H is pointed to by RO; then add 4
; to RO.

5.1.5 Autodecrement Mode

In autodecrement mode, the processor decrements the contents of the
register by the size of the operand data type; the register contains the
address of the operand. The processor decrements the register by 1, 2,
4, 8, or 16 for byte, word, longword, quadword, or octaword operands,
respectively.

Autodecrement mode can be used with index mode (see Section 5.3),
but the index register cannot be the same as the register specified in
autodecrement mode.

Formats

~(Rn)
—(AP)
—(FP)
—(SP)

Parameters

n
A number in the range 0 to 12.

EXAMPLE

CLRO -(R1) ; Subtract 8 from Rl and zero
; the octaword whose address
H is in R1.

MOVZBL R3,-(SP) ; Push the zero-extended low byte
; of R3 onto the stack as a
; longword.

CMPB R1l, - (RO) ; Subtract 1 from RO and compare
; low byte of Rl with byte whose
H address is now in RO.

5-7




VAX MACRO Addressing Modes
5.1 General Register Modes

5.1.6 Displacement Mode

In displacement mode, the contents of the register plus the displacement
(sign-extended to a longword) produce the address of the operand.

Displacement mode can be used with index mode (see Section 5.3). If used
in displacement mode, the index register can be the same as the base
register.

Formats
dis(Rn)
dis(AP)
dis(FP)
dis(SP)

Parameters

n
A number in the range 0 to 12.

dis
An expression specifying a displacement; the expression can be preceded

by one of the following displacement length specifiers, which indicate the
number of bytes needed to store the displacement:

Displacement Length

Specifier Meaning

B Displacement requires 1 byte.

Wa Displacement requires one word (2 bytes).

LA Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the expression, and the value
of the expression is known, the assembler chooses the smallest number of
bytes (1, 2, or 4) needed to store the displacement. If no length specifier
precedes the expression, and the value of the expression is unknown, the
assembler reserves one word (2 bytes) for the displacement. Note that

if the displacement is either relocatable or defined later in the source
program, the assembler considers it unknown. If the actual displacement
does not fit in the memory reserved, the linker displays an error message.

EXAMPLE

5-8

MOVAB KEYWORDS, R3 ; Get address of KEYWORDS.

MOVB B"IO(R3),R4 ; Get byte whose address is I0
; plus address of KEYWORDS;
H the displacement is stored
; as a byte.

MOVB B~ACCOUNT (R3) ,R5 ; Get byte whose address is
; ACCOUNT plus address of
; KEYWORDS; the displacement
; is stored as a byte.




VAX MACRO Addressing Modes
5.1 General Register Modes

CLRW L~STA (R1) ; Clear word whose address
; is STA plus contents of Rl;
; the displacement is stored

as a longword.

MOVL RO, -2 (R2) ; Move RO to address that is -2
; plus the contents of R2; the
? displacement is stored as a

byte.

TSTB EXTRN (R3) ; Test the byte whose address
; is EXTRN plus the address
; of KEYWORDS; the displace-
; ment is stored as a word,
’

since EXTRN is undefined.

MOVAB 2 (R5),RO ; Move <contents of R5> + 2
; to RO.

Note: If the value of the displacement is zero, and no displacement
length is specified, the assembler uses register deferred mode
rather than displacement mode.

5.1.7 Displacement Deferred Mode

In displacement deferred mode, the contents of the register plus the
displacement (sign-extended to a longword) produce the address of the
operand address (a pointer to the operand).

Displacement deferred mode can be used with index mode (see Section 5.3).
If used in displacement deferred mode, the index register can be the same
as the base register.

Formats
@dis(Rn)
@dis(AP)
@dis(FP)
@dis(SP)

Parameters

n
A number in the range 0 to 12.

dis

An expression specifying a displacement; the expression can be preceded
by one of the following displacement length specifiers, which indicate the
number of bytes needed to store the displacement:

Displacement Length

Specifier Meaning

BA Displacement requires 1 byte.

WA Displacement requires one word (2 bytes).

LA Displacement requires one longword {4 bytes).

5-9




5.1.8

VAX MACRO Addressing Modes
5.1 General Register Modes

If no displacement length specifier precedes the expression, and the value
of the expression is known, the assembler chooses the smallest number of
bytes (1, 2, or 4) needed to store the displacement. If no length specifier
precedes the expression, and the value of the expression is unknown, the
assembler reserves one word (2 bytes) for the displacement. Note that

if the displacement is either relocatable or defined later in the source
program, the assembler considers it unknown. If the actual displacement
does not fit in the memory the assembler has reserved, the linker displays
an error message.

EXAMPLE

MOVAL ARRPOINT, R6
CLRL @16 (R6)

MOVL @B"OFFS (R6) , @RSOFF (R6)

CLRW @84 (R2)

Get address of array of pointers.
Clear longword pointed to by
longword whose address is
<16 + address of ARRPOINT>; the
displacement is stored as a byte.

D T T T

Move the longword pointed to
by longword whose address is
<OFFS + address of ARRPOINT>
to the address pointed to by
longword whose address is
<RSOFFS + address of ARRPOINT>;
the first displacement is
stored as a byte; the second
displacement is stored as a word.

Ne Ne Ne Ne Ne N N Ne

Clear word pointed to by
<longword at 84 + contents of R2>;
the assembler uses byte
displacement automatically.

Ne Ne Ne N

Literal Mode

5-10

In literal mode, the value of the literal is stored in the addressing mode
byte.

Formats

#literal
Shliteral

Parameters

literal

An expression, an integer constant, or a floating-point constant. The literal
must fit in the short literal form. That is, integers must be in the range

0 to 63 and floating-point constants must be one of the 64 values listed in
Table 5-2 and Table 5-3. Floating-point short literals are stored with a
3-bit exponent and a 3-bit fraction. Table 5-2 and Table 5-3 also show the
value of the exponent and the fraction for each literal. See Section 8.6.8
for information on the format of short literals.




VAX MACRO Addressing Modes
5.1 General Register Modes

Table 5-2 Floating-Point Literals Expressed as Decimal Numbers

Exponent 0 1 2 3 4 5 6 7

0 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375
1 1.0 1.125 1.25 1.37 1.5 1.625 1.75 1.875
2 2.0 2.25 25 2.75 3.0 3.25 35 3.75

3 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

4 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

5 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

6 32.0 36.0 40.0 44.0 48.0 52.0 56.0 60.0

7 64.0 72.0 80.0 88.0 96.0 104.0 112.0 120.0

Table 5-3 Floating-Point Literals Expressed as Rational Numbers

Exponent 0 1 2 3 4 5 6 7
0 1/2 9/16 5/8 11/16 3/4 13/16 7/8 15/16
1 1 1-1/8 1-1/4 1-3/8 1-1/2 1-5/8 1-3/4 1-7/8
2 2 2-1/4 2-1/2 2-3/4 3 3-1/4 3-1/2 3-3/4
3 4-1/2 5 5-1/2 6 6-1/2 7 7-1/2
4 8 9 10 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120
EXAMPLE
MOVL #1,R0O ; RO is set to 1; the 1 is stored
; in the instruction as a short
; literal.
MOVB S~#CR,R1 ; The low byte of Rl is set

MOVF #0.625,R6

’

; to the value CR.

; CR is stored in the instruction
; as a short literal.

; If CR is not in range 0-63,

; the linker produces a

; truncation error.

; R6 is set to the floating-point
; value 0.625; it is stored

; in the floating-point short

; literal form.

Notes

1

When you use the #literal format, the assembler chooses whether to
use literal mode or immediate mode (see Section 5.2.4). The assembler
uses immediate mode if any of the following conditions is satisfied:

¢ The value of the literal does not fit in the short literal form.

e The literal is a relocatable or external expression (see Section 3.5).

5-11




5.2

5.2.1

VAX MACRO Addressing Modes
5.1 General Register Modes

* The literal is an expression that contains undefined symbols.

The difference between immediate mode and literal mode is the
amount of storage that it takes to store the literal in the instruction.

2 The S7#literal format forces the assembler to use literal mode.

Program Counter Modes

The program counter (PC) modes use the PC for a general register.
Following are the five program counter modes:

¢ Relative

¢ Relative deferred
* Absolute

¢  Immediate

* General

In Section 8.7, Table 8-6 is a summary of PC addressing.

Relative Mode

5-12

In relative mode, the address specified is the address of the operand. The
assembler stores the address as a displacement from the PC.

Relative mode can be used with index mode (see Section 5.3).

Format

address

Parameters

address

An expression specifying an address; the expression can be preceded by
one of the following displacement length specifiers, which indicate the
number of bytes needed to store the displacement.

Displacement Length

Specifier Meaning

B2 Displacement requires 1 byte.

A Displacement requires one word (2 bytes).

LA Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the address expression, and
the value of the expression is known, the assembler chooses the smallest
number of bytes (1, 2, or 4) needed to store the displacement. If no length
specifier precedes the address expression, and the value of the expression
is unknown, the assembler uses the default displacement length (see the
description of DEFAULT in Chapter 6). If the address expression is either
defined later in the program or defined in another program section, the
assembler considers the value unknown.




5.2.2

VAX MACRO Addressing Modes
5.2 Program Counter Modes

EXAMPLE

MOVL LABEL,R1 ; Get longword at LABEL; the

; assembler uses default
; displacement unless LABEL was
; previously defined in this
; section
CMPL WA<DATA+4>,R10 ; Compare R10 with longword at

H address DATA+4; CMPL
; uses a word displacement

Relative Deferred Mode

In relative deferred mode, the address specified is the address of the
operand address (a pointer to the operand). The assembler stores the
address specified as a displacement from the PC.

Relative deferred mode can be used with index mode (see Section 5.3).

Format
@address

Parameters

address

An expression specifying an address; the expression can be preceded by
one of the following displacement length specifiers, which indicate the
number of bytes needed to store the displacement:

Displacement Length

Specitier Meaning

B~ Displacement requires 1 byte.

wAa Displacement requires one word (2 bytes).

LA Displacement requires one longword (4 bytes).

If no displacement length specifier precedes the address expression, and
the value of the expression is known, the assembler chooses the smallest
number of bytes (1, 2, or 4) needed to store the displacement. If no length
specifier precedes the address expression, and the value of the expression
is unknown, the assembler uses the default displacement length (see the
description of DEFAULT in Chapter 6). If the address expression is either
defined later in the program or defined in another program section, the
assembler considers the value unknown.

EXAMPLE

CLRL QAW PNTR ; Clear longword pointed to by
; longword at PNTR; the assembler
; uses a word displacement

INCB @L"NCOUNTS+4 ; Increment byte pointed to by
; longword at COUNTS+4; assembler
H uses a longword displacement

5-13




5.2.3

5.2.4

VAX MACRO Addressing Modes
5.2 Program Counter Modes

Absolute Mode
In absolute mode, the address specified is the address of the operand. The
address is stored as an absolute virtual address (compare relative mode,
where the address is stored as a displacement from the PC).
Absolute mode can be used with index mode (see Section 5.3).
Format
@#address
Parameters
address
An expression specifying an address.
EXAMPLE

CLRL @#7X1100 ; Clear the contents of location 1100 (hex)
CLRB @#ACCOUNT ; Clear the contents of location

; ACCOUNT; the address is stored

; absolutely, not as a displacement
CALLS #3,Q#SYSSFAO ; Call the procedure SYSSFAO with

; three arguments on the stack

Immediate Mode

In immediate mode, the literal specified is the operand.

Formats

#literal
[ tliteral

Parameters

literal
An expression, an integer constant, or a floating-point constant.

EXAMPLE

5-14

MOVL #1000, RO ; RO is set to 1000; the operand 1000
; is stored in a longword
MOVB #BAR, R1 ; The low byte of Rl is set
; to the value of BAR
MOVFE #0.1,R6 ; R6 is set to the floating-point
; value 0.1; it is stored
; as a 4-byte floating-point
; value (it cannot be

; represented as a short literal)

ADDL2 I™#5,R0 / The 5 is stored in a longword
; because the I” forces the
; assembler to use immediate mode




5.2.5

VAX MACRO Addressing Modes
5.2 Program Counter Modes

MOVG #0.2,R6 ; The value 0.2 is converted
; to its G_FLOATING representation
MOVG #PI,R6 ; The value contained in PI is
; moved to R6; no conversion is
; performed
Notes
1  When you use the #literal format, the assembler chooses whether to

use literal mode (Section 5.1.8) or immediate mode. If the literal is
an integer from 0 to 63 or a floating-point constant that fits in the
short literal form, the assembler uses literal mode. If the literal is
an expression, the assembler uses literal mode if all the following
conditions are met:

o The expression is absolute.

e The expression contains no undefined symbols.

e The value of the expression fits in the short literal form.
In all other cases, the assembler uses immediate mode.

The difference between immediate mode and literal mode is the
amount of storage required to store the literal in the instruction.
The assembler stores an immediate mode literal in a byte, word, or
longword depending on the operand data type.

The I #literal format forces the assembler to use immediate mode.

You can specify floating-point numbers two ways: as a numeric value
or as a symbol name. The assembler handles these values in different
ways, as follows:

e Numeric values are converted to the appropriate internal floating-
point representation.

e Symbols are not converted. The assembler assumes that the
values have already been converted to internal floating-point
representation.

Once the assembler obtains the value, it tries to convert the internal
representation of the value to a short floating literal. If conversion
fails, the assembler uses immediate mode; if conversion succeeds, the
assembler uses short floating literal mode.

General Mode

In general mode, the address you specify is the address of the operand.

The linker converts the addressing mode to either relative or absolute

mode. If the address is relocatable, the linker converts general mode

to relative mode. If the address is absolute, the linker converts general
mode to absolute mode. You should use general mode to write position-
independent code when you do not know whether the address is relocatable

or absolute. A general addressing mode operand requires 5 bytes of
storage.

You can use general mode with index mode (see Section 5.3).

5-15




5.3

VAX MACRO Addressing Modes
5.2 Program Counter Modes

Format

GA*address

Parameters

address
An expression specifying an address.

EXAMPLE

CLRL G"LABEL_1 ; Clears the longword at LABEL_1

If LABEL 1 is defined as

absolute then general mode is
converted to absolute

mode; if it is defined as
relocatable, then general mode is
converted to relative mode

N Ne SeoNe Ne we

CALLS #5, G"SYSS$SERVICE ; Calls procedure SYS$SSERVICE
; with 5 arguments on stack

Index Mode

5-16

Index mode is a general register mode that can be used only in
combination with another mode (the base mode). The base mode can be
any addressing mode except register, immediate, literal, index, or branch.
The assembler first evaluates the base mode to get the base address. To
get the operand address, the assembler multiplies the contents of the
index register by the number of bytes of the operand data type, then adds
the result to the base address.

Combining index mode with the other addressing modes produces the
following addressing modes:

* Register deferred index

¢ Autoincrement index

* Autoincrement deferred index
¢ Autodecrement index

* Displacement index

¢ Displacement deferred index
¢ Relative index

* Relative deferred index

* Absolute index

¢ General index

The process of first evaluating the base mode and then adding the index
register is the same for each of these modes.




VAX MACRO Addressing Modes
5.3 Index Mode

Formats

base-mode[Rx]
base-mode[AP]
base-mode[FP}]
base-mode[SP]

Parameters

base-mode
Any addressing mode except register, immediate, literal, index, or branch,
specifying the base address.

X
A number in the range 0 to 12, specifying the index register.

Table 5—4 lists the formats of index mode addressing.

EXAMPLE

’

; Register deferred index mode

Define OFFS

Get address of BLIST

Set up index register

Clear byte whose address
is the address of BLIST
plus 20*1

OFFS=20

~

MOVAB BLIST,R9
MOVL #OFFS,R1
CLRB (R9) [R1]

Ne e Ne N N

CLRQ (R9) [R1] ; Clear gquadword whose
H address is the address
; of BLIST plus 20*8

CLRO (R9) [R1] ; Clear octaword whose
; address is the address
; of BLIST plus 20*16

; Autoincrement index mode

CLRW (R9) +[R1] ; Clear word whose address
H is address of BLIST plus
; 20*2; R9 now contains

; address of BLIST+2

; Autoincrement deferred index mode

MOVAL POINT,R8 ; Get address of POINT
MOVL #30,R2 ; Set up index register
CLRW @ (R8) +[R2] ; Clear word whose address

; is 30*2 plus the address

; stored in POINT; R8 now

; contains 4 plus address of
; POINT

; Displacement deferred index mode

MOVAL ADDARR, R9 ; Get address of address array
MOVL #100,R1 ; Set up index register
TSTF @40 (R9) [R1] ; Test floating-point value

; whose address is 100*4 plus
; the address stored at
; (ADDARR+40)

5-17




54

VAX MACRO Addressing Modes

5.3 Index Mode

Table 5-4 Index Mode Addressing

Mode Format
Register Deferred Index'? (Rn)[Rx]
Autoincrement Index'- (Rn)+[Rx]
Autoincrement Deferred @(Rn)+[Rx]
Index'+2

Autodecrement Index'+? ~(Rn)[Rx]
Displacement Index'+?? dis(Rn)[Rx]
Displacement Deferred @dis(Rn)[Rx]
Index' 23

Relative Index? address[Rx]
Relative Deferred Index? @address[Rx]
Absolute Index? @#address[Rx]
General Index? Graddress[Rx]

'Rn—Any general register RO to R12 or the AP, FP, or SP register.

2Rx—Any general register RO to R12 or the AP, FP, or SP register. Rx cannot be the same
register as Rn in the autoincrement index, autoincrement deferred index, and decrement index

addressing modes.

3dis—An expression specifying a displacement.

Notes

1 If the base mode alters the contents of its register (autoincrement,
autoincrement deferred, and autodecrement), the index mode cannot

specify the same register.

2 The index register is added to the address after the base mode is
completely evaluated. For example, in autoincrement deferred index
mode, the base register contains the address of the operand address.
The index register (times the length of the operand data type) is added
to the operand address rather than to the address stored in the base

register.

Branch Mode

5-18

In branch mode, the address is stored as an implied displacement from the
PC. This mode can be used only in branch instructions. The displacement
for conditional branch instructions and the BRB instruction is stored in

a byte. The displacement for the BRW instruction is stored in a word

(2 bytes). A byte displacement allows a range of 127 bytes forward and
128 bytes backward. A word displacement allows a range of 32,767 bytes
forward and 32,768 bytes backward. The displacement is relative to the
updated PC, the byte past the byte or word where the displacement is
stored. See Chapter 9 for more information on the branch instructions.




VAX MACRO Addressing Modes
5.4 Branch Mode

Format

address

Parameters

address
An expression that represents an address.

EXAMPLE

ADDL3 (R1)+,R0, TOTAL Total values and set condition

; codes
BLEQ LABEL1 ; Branch to LABELl if result is
; less than or equal to O
BRW LABEL ; Branch unconditionally to LABEL

5-19







	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

