9 VAX Instruction Set

The following sections describe the native-mode instruction set. The
instructions are divided into groups according to their function and are
listed alphabetically within each group.

9.1 Introduction to the VAX Instruction Set

This section describes the instructions generally used by all software
across all implementations of the VAX architecture.

You can find a more complete description of the instruction set in the
VAX Architecture Reference Manual. The VAX Architecture Reference
Manual also contains information on instructions that are generally used
by privileged software and are specific to specialized portions of the VAX
architecture, such as memory management, interrupts and exceptions,
process dispatching, and processor registers.

A list of instructions and opcode assignments appears in Appendix D.

9.2 Instruction Descriptions
The instruction set is divided into the following 12 major sections:

e Integer arithmetic and logical

¢ Address
e Variable-length bit field
¢+ Control

e Procedure call

¢ Miscellaneous

* Queue

¢ TFloating point

¢ Character string

¢ Cyclic redundancy check (CRC)

¢ Decimal string

o Edit

Within each major section, instructions that are closely related are

combined into groups and described together. The instruction group
description is composed of the following:

¢ The group name.

9-1

VAX Instruction Set
9.2 Instruction Descriptions

9-2

¢ The format of each instruction in the group, including the name and
type of each instruction operand specifier and the order in which it
appears in memory. Operand specifiers from left to right appear in
increasing memory addresses.

¢ The effect on condition codes.

* Exceptions specific to the instruction. Exceptions that are generally
possible for all instructions (for example, illegal or reserved addressing
mode, T-bit, and memory management violations) are not listed.

* The opcodes, mnemonics, and names of each instruction in the group.
The opcodes are given in hexadecimal.

¢ A description, in English, of the instruction.

* Optional notes on the instruction and programming examples.

Operand Specifier Notation
Operand specifiers are described as follows:
name . access-type data-type

name

A mnemonic name for the operand in the context of the instruction. The
name is often abbreviated.

access-type
A letter denoting the operand specifier access type:

a Calculate the effective address of the specified operand. Address is returned
in a longword that is the actual instruction operand. Context of address
calculation is given by data-type; that is, size to be used in autoincrement,
autodecrement, and indexing.

b No operand reference. Operand specifier is a branch displacement. Size of
branch displacement is given by data-type.
m Operand is read, potentially modified, and written. Note that this is nof an

indivisible memory operation. Also note that if the operand is not actually
modified, it may not be written back. However, modify type operands are
always checked for both read and write accessibility.

r Operand is read only.

v Calculate the effective address of the specified operand. If the effective
address is in memory, the address is returned in a longword that is the actual
instruction operand. Context of address calculation is given by data-type. If
the effective address is Rn, the operand is in Rn or R[n+1]'Rn.

w Operand is written only.

data-type

A letter denoting the data type of the operand:
b Byte

d D_floating

f F_floating

g G_floating

VAX Instruction Set
9.2 Instruction Descriptions

First data type specified by instruction

h H_floating
| Longword

o] Octaword

q Quadword
w Word

X

y

Second data type specified by instruction

Operation Description Notation

The operation of an instruction is given as a sequence of control and
assignment statements in an ALGOL-like syntax. No attempt is made to
formally define the syntax; it is assumed to be familiar to the reader. The
notation used is an extension of the notation introduced in Section 8.6.

+

*

/
*k
'
<-

Rn or R[n]
PC, SP, FP, or AP

PSW
PSL

<xy>

<x1,X2,...,xn>
{}

AND

OR

XOR

NOT

LSS

LSSU

Addition

Subtraction, unary minus
Multiplication

Division (quotient only)
Exponentiation
Concatenation

Is replaced by

Is defined as

Contents of register Rn

The contents of register R15, R14, R13, or R12,
respectively

The contents of the processor status word
The contents of the processor status longword
Contents of memory location whose address is x

Contents of memory location whose address is x; x
incremented by the size of operand referenced
at x

x decremented by size of operand to be referenced at
x; contents of memory location whose address is x

A modifier that delimits an extent from bit position x to
bit position y inclusive

A modifier that enumerates bits x1,x2,...,xn
Arithmetic parentheses used to indicate precedence
Logical AND

Logical OR

Logical XOR

Logical (one’s) complement

Less than signed

Less than unsigned

9-3

VAX Instruction Set
9.2 Instruction Descriptions

LEQ Less than or equal signed

LEQU Less than or equal unsigned

EQL Equal signed

EQLU Equal unsigned

NEQ Not equal signed

NEQU Not equal unsigned

GEQ Greater than or equal signed

GEQU Greater than or equal unsigned

GTR Greater than signed

GTRU Greater than unsigned

SEXT(x) x is sign extended to size of operand needed

ZEXT(x) X is zero extended to size of operand needed

REM(x,y) Remainder of x divided by y, such that x/y and
REM(x,y) have the same sign

MINU(x,y) Minimum unsigned of x and y

MAXU(x,y) Maximum unsigned of x and y

Use the following conventions:

Other than alterations caused by (x)+, or —(x), and the advancement
of the program counter (PC), only operands or portions of operands
appearing on the left side of assignment statements are affected.

No operator precedence is assumed, except that replacement (<-) has
the lowest precedence. Precedence is indicated explicitly by { }.

All arithmetic, logical, and relational operators are defined in the
context of their operands. For example, “+” applied to floating
operands means a floating add, while “+” applied to byte operands

is an integer byte add. Similarly, “L.SS” is a floating comparison when
applied to floating operands, while “L'SS” is an integer byte comparison
when applied to byte operands.

Instruction operands are evaluated according to the operand specifier
conventions (see Chapter 8). The order in which operands appear in
the instruction description has no effect on the order of evaluation.

Condition codes generally indicate the effect of an operation on the
value of actual stored results, not on “true” results (which might be
generated internally to greater precision). For example, two positive
integers can be added together and the sum stored as a negative value
because of overflow. The condition codes indicate a negative value even
though the “true” result is clearly positive.

VAX Instruction Set
9.2 Instruction Descriptions

9.2.1 Integer Arithmetic and Logical Instructions

The following instructions are described in this section:

Number of

Description and Opcode Instructions

1. Add Aligned Word 1
ADAWI add.rw, sum.mw

2. Add 2 Operand 3
ADD{B,W,L}2 add.rx, sum.mx

3. Add 3 Operand 3
ADD{B,W,L}3 add1.rx, add2.rx, sum.wx

4, Add with Carry 1
ADWC add.rl, sum.ml

5. Arithmetic Shift 2
ASH{L,Q} cnt.rb, src.rx, dst.wx

6. Bit Clear 2 Operand 3
BIC{B,W,L}2 mask.rx, dst.mx

7. Bit Clear 3 Operand 3
BIC{B,W,L}3 mask.rx, src.rx, dst.wx

8. Bit Set 2 Operand 3
BIS{B,W,L}2 mask.rx, dst.mx

9. Bit Set 3 Operand 3
BIS{B,W,L}3 mask.rx, src.rx, dst.wx

10. Bit Test 3
BIT{B,W,L} mask.rx, src.rx

11. Clear 5
CLR{B,W,L,Q,0} dst.wx

12. Compare 3
CMP{B,W,L} srci.rx, src2.rx

13. Convert 6
CVT{B,W,L}{B,W,L} src.rx, dst.wy
All pairs except BB,WW,LL

14, Decrement 3
DEC{B,W,L} dif.mx

15. Divide 2 Operand 3
DIV{B,W,L}2 divr.rx, quo.mx

16. Divide 3 Operand 3
DIV{B,W,L}3 divr.rx, divd.rx, quo.wx

17. Extended Divide 1
EDIV divr.rl, divd.rg, quo.wl, rem.wl

18. Extended Multiply 1
EMUL mulr.rl, muld.rl, add.rl, prod.wg

19. Increment 3
INC{B,W,L} sum.mx

20. Move Complemented 3

MCOM({B,W,L} src.rx, dst.wx

9-5

VAX Instruction Set

9.2 Instruction Descriptions

9-6

Number of

Description and Opcode Instructions

21. Move Negated 3
MNEG{B,W,L} src.rx, dst.wx

22. Move 4
OV{B,W,L,Q} src.rx, dst.wx

23. Move Zero-Extended 3
MOVZ{BW,BL,WL} src.rx, dst.wy

24, Muitiply 2 Operand 3
MUL{B,W,L}2 mulr.rx, prod.mx

25. Multiply 3 Operand 3
MUL{B,W,L}3 mulr.rx, muld.rx, prod.wx

26. Push Long 1
PUSHL src.rl, {-(SP).wl}

27. Rotate Long 1
ROTL cnt.rb, src.rl, dst.wl

28. Subtract with Carry 1
SBWC sub.rl, dif.m!

29, Subtract 2 Operand 3
SUB({B,W,L}2 sub.rx, dif.mx

30. Subtract 3 Operand 3
SUB{B,W,L}3 sub.rx, min.rx, dif.wx

31. Test 3
TST{B,W,L} src.rx

32. Exclusive OR 2 Operand 3
XOR({B,W,L}2 mask.rx, dst.mx

33. Exclusive OR 3 Operand 3

XOR{B,W,L}3 mask.rx, src.rx, dst.wx

VAX Instruction Set
ADAWI

ADAWI

Add Aligned Word Interlocked

FORMAT

condition codes

opcode add.rw, sum.mw

N «—sumLSS0;

Z «—— sum EQL 0;

\' «— {integer overflow};

C +— {carry from most-significant bit};
exceptions reserved operand fault

integer overflow

opcodes

58 ADAWI Add Aligned Word Interlocked
DESCRIPTION The addend operand is added to the sum operand, and the sum operand

is replaced by the resuit. The operation is interlocked against similar
operations on other processors in a multiprocessor system. The destination
must be aligned on a word boundary; that is, bit 0 of the address of the
sum operand must be zero. If it is not, a reserved operand fault is taken.

Notes

1 Integer overflow occurs if the input operands to the add have the
same sign, and the result has the opposite sign. On overflow, the sum
operand is replaced by the low-order bits of the true result.

2 If the addend and the sum operands overlap, the result and the
condition codes are UNPREDICTABLE.

9-7

VAX Instruction Set

ADD
ADD
Add
FORMAT 2o0perand: opcode add.rx, sum.mx

3operand: opcode addi.rx, add2.rx, sum.wx

condition codes

N «—— sum LSS 0;
z «— sum EQL 0;
\ +«— {integer overflow};
Cc «— {carry from most-significant bit};
exceptions integer overflow
opcodes
80 ADDB2 Add Byte 2 Operand
81 ADDB3 Add Byte 3 Operand
A0 ADDW?2 Add Word 2 Operand
A1 ADDW3 Add Word 3 Operand
Co ADDL2 Add Long 2 Operand
C1 ADDL3 Add Long 3 Operand

DESCRIPTION In 2 operand format, the addend operand is added to the sum operand
and the sum operand is replaced by the result. In 3 operand format, the
addend 1 operand is added to the addend 2 operand and the sum operand
is replaced by the result.

Note

Integer overflow occurs if the input operands to the add have the same
sign and the result has the opposite sign. On overflow, the sum operand is
replaced by the low-order bits of the true result.

9-8

VAX Instruction Set
ADWC

Add with Carry
FORMAT opcode add.rl, sum.ml
condition codes

N +— sum LSS 0;

Z +«— sum EQL 0;

\ +—— {integer overflow};

C «—— {carry from most-significant bit};
exceptions integer overflow
opcodes

D8 ADWC Add with Carry

DESCRIPTION The contents of the condition code C-bit and the addend operand are added
to the sum operand and the sum operand is replaced by the result.

Notes

1 On overflow, the sum operand is replaced by the low-order bits of the
true result.

2 The two additions in the operation are performed simultaneously.

9-9

VAX Instruction Set

ASH

ASH

Arithmetic Shift

FORMAT opcode cnt.rb, src.rx, dst.wx
condition codes
N +«— dst LSS 0;
z «— dst EQL 0;
\ +«— {integer overflow};
C 0
exceptions integer overflow
opcodes
78 ASHL Arithmetic Shift Long
79 ASHQ Arithmetic Shift Quad
DESCRIPTION The source operand is arithmetically shifted by the number of bits

9-10

specified by the count operand and the destination operand is replaced

by the result. The source operand is unaffected. A positive count operand
shifts to the left, bringing zeros into the least significant bit. A negative
count operand shifts to the right, bringing in copies of the most significant
(sign) bit into the most significant bit. A zero count operand replaces the
destination operand with the unshifted source operand.

Notes

1 Integer overflow occurs on a left shift if any bit shifted into the sign bit
position differs from the sign bit of the source operand.

2 Ifcent GTR 32 (ASHL) or cnt GTR 64 (ASHQ), the destination operand
is replaced by zero.

3 Ifent LEQ -31 (ASHL) or ent LEQ —63 (ASHQ), all the bits of the
destination operand are copies of the sign bit of the source operand.

VAX Instruction Set
BIC

BIC

Bit Clear

FORMAT

condition codes

2operand: opcode mask.rx, dst.mx
3operand: opcode mask.rx, src.rx, dst.wx

N «—— dst LSS 0;
Z «— dstEQLO;
\ «— 0;
C — C;
exceptions None.
opcodes
8A BICB2 Bit Clear Byte
8B BICB3 Bit Clear Byte
AA BICW2 Bit Clear Word
AB BICW3 Bit Clear Word
CA BICL2 Bit Clear Long
CB BICL3 Bit Clear Long
DESCRIPTION In 2 operand format, the result of the logical AND on the destination

operand and the one’s complement of the mask operand replaces the
destination operand. In 3 operand format, the result of the logical AND
on the source operand and the one’s complement of the mask operand
replaces the destination operand.

9-1

VAX Instruction Set

BIS
BIS
Bit Set
FORMAT 2operand: opcode mask.rx, dst.mx

3operand: opcode mask.rx, src.rx, dst.wx

condition codes

N «— dst LSS 0;
z +«— dst EQL 0;
\ «— 0;
C «— C;

exceptions None.

opcodes
88 BISB2 Bit Set Byte 2 Operand
89 BISB3 Bit Set Byte 3 Operand
A8 BISw2 Bit Set Word 2 Operand
A9 BISW3 Bit Set Word 3 Operand
c8 BISL2 Bit Set Long 2 Operand
C9 BISL3 Bit Set Long 3 Operand

DESCRIPTION In 2 operand format, the result of the logical OR on the mask operand and
the destination operand replaces the destination operand. In 3 operand
format, the result of the logical OR on the mask operand and the source
operand replaces the destination operand.

9-12

VAX Instruction Set
BIT

Bit Test
FORMAT opcode mask.rx, src.rx
condition codes
N +—— tmp LSS 0;
Z +«— tmp EQL 0;
\Y «— 0;
C — G;
exceptions None.
opcodes
93 BITB Bit Test Byte
B3 BITW Bit Test Word
D3 BITL Bit Test Long
DESCRIPTION The logical AND is performed on the mask operand and the source

operand. Both operands are unaffected. The only action is to modify

condition codes.

9-13

VAX Instruction Set

CLR
Clear
FORMAT opcode dst.wx
condition codes
N «— 0
4 — 1;
\'% «— 0;
C — C;
exceptions None.
opcodes
94 CLRB Clear Byte
B4 CLRW Clear Word
D4 CLRL Clear Long
7C CLRQ Clear Quad
7CFD CLRO Clear Octa
DESCRIPTION The destination operand is replaced by zero.

9-14

Note
CLRx dst is equivalent to MOVx SA#0, dst, but is 1 byte shorter.

VAX Instruction Set
CMP

CMP

Compare

FORMAT

condition codes

opcode srcl.rx, src2.rx

N +«— src1 LSS sre2;
z «— src1 EQL sre2;
\' «— 0;
Cc «— src1 LSSU sre2;
exceptions None.
opcodes
91 CMPB Compare Byte
B1 CMPW Compare Word
D1 CMPL Compare Long
DESCRIPTION The source 1 operand is compared with the source 2 operand. The only

action is to modify the condition codes.

9-15

VAX Instruction Set

CVvVT

CVT

Convert

FORMAT opcode src.rx, dst.wy

condition codes
N +— dst LSS 0;
z «— dst EQL 0;
\" «— {integer overflow};
C +— 0;

exceptions integer overflow

opcodes
99 cviBw Convert Byte to Word
98 CvTBL Convert Byte to Long
33 CVTWB Convert Word to Byte
32 CVTWL Convert Word to Long
Fé CVTLB Convert Long to Byte
F7 CVTLW Convert Long to Word

DESCRIPTION The source operand is converted to the data type of the destination
operand and the destination operand is replaced by the result. Conversion
of a shorter data type to a longer one is done by sign extension; conversion
of longer data type to a shorter one is done by truncation of the higher-

numbered (most significant) bits.

Note

Integer overflow occurs if any truncated bits of the source operand are not

equal to the sign bit of the destination operand.

9-16

VAX Instruction Set
DEC

DEC

Decrement

FORMAT opcode dif.mx
condition codes
N «— dif LSS 0;
z «— dif EQL 0;
\ +«— {integer overflow};
C «— {borrow into most significant bit};
exceptions integer overflow
opcodes
97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL Decrement Long
DESCRIPTION One is subtracted from the difference operand, and the difference operand

is replaced by the result.

Notes

1 Integer overflow occurs if the largest negative integer is decremented.
On overflow, the difference operand is replaced by the largest positive
integer.

2 DECx dif is equivalent to SUBx SA#1, dif, but is 1 byte shorter.

9-17

VAX Instruction Set

DIV

DIV

Divide

FORMAT

condition codes

2operand: opcode divr.rx, quo.mx
3operand: opcode divr.rx, divd.rx, quo.wx

N +— quo LSS 0;
z «—— quo EQL 0;
\ «— {integer overflow} OR {divr EQL 0};
C «— 0;
exceptions integer overflow
divide by zero
opcodes
86 DivB2 Divide Byte 2 Operand
87 DivVB3 Divide Byte 3 Operand
A8 DIiVW2 Divide Word 2 Operand
A7 DIVW3 Divide Word 3 Operand
Ce DivL2 Divide Long 2 Operand
C7 DIVL3 Divide Long 3 Operand
DESCRIPTION In 2 operand format, the quotient operand is divided by the divisor

9-18

operand, and the quotient operand is replaced by the result. In 3 operand
format, the dividend operand is divided by the divisor operand, and the
quotient operand is replaced by the result.

Notes

1 Division is performed so that the remainder has the same sign as the
dividend; that is, the result is truncated toward zero. (Note that a
remainder of zero is not saved.)

2 Integer overflow occurs only if the largest negative integer is divided
by —1. On overflow, operands are affected as in note 3 following.

3 If the divisor operand is zero, then in 2 operand format the quotient
operand is not affected; in 3 operand format the quotient operand is
replaced by the dividend operand.

VAX Instruction Set
EDIV

EDIV

Extended Divide

FORMAT opcode divr.rl, divd.rq, quo.wl, rem.wl
condition codes

N +— quo LSS 0;

Z «—— quo EQL 0;

\ +— {integer overflow} OR {divr EQL 0};

C «— 0;
exceptions integer overflow

divide by zero

opcodes

7B EDIV Extended Divide
DESCRIPTION The dividend operand is divided by the divisor operand, the quotient

operand is replaced by the quotient, and the remainder operand is replaced
by the remainder.

Notes

1

The division is performed such that the remainder operand (unless it
is zero) has the same sign as the dividend operand.

On overflow, the operands are affected as in note 3, following.

If the divisor operand is zero, then the quotient operand is replaced
by bits 31:0 of the dividend operand, and the remainder operand is
replaced by zero.

9-19

VAX Instruction Set

EMUL
EMUL
Extended Multiply
FORMAT opcode mulr.rl, muld.rl, add.rl, prod.wq
condition codes
N «— prod LSS 0;
Z +«— prod EQL 0;
\ +— 0;
C «— 0;
exceptions None.
opcodes
7A EMUL Extended Multiply

DESCRIPTION The multiplicand operand is multiplied by the multiplier operand, giving
a double-length result. The addend operand is sign extended to double
length and added to the result. The product operand is replaced by the
final result.

9-20

VAX Instruction Set
INC

INC

Increment

FORMAT opcode sum.mx
condition codes
N +«— sum LSS 0;
z «—— sum EQL 0;
\ +«— {integer overflow};
C +«— {carry from most significant bit};
exceptions integer overflow
opcodes
96 INCB Increment Byte
B6 INCW increment Word
D6 INCL Increment Long
DESCRIPTION Oneis added to the sum operand and the sum operand is replaced by the

result.

Notes

1 Arithmetic overflow occurs if the largest positive integer is
incremented. On overflow, the sum operand is replaced by the largest
negative integer.

2 INCx sum is equivalent to ADDx SA#1, sum, but is 1 byte shorter.

9-21

VAX Instruction Set

MCOM
Move Complemented
FORMAT opcode src.rx, dst.wx
condition codes
N +«—— dst LSS 0;
Z +— dst EQL 0;
Vv «— 0;
C «— C;
exceptions None.
opcodes
92 MCOMB Move Complemented Byte
B2 MCOMW Move Complemented Word
D2 MCOML Move Complemented Long

DESCRIPTION The destination operand is replaced by the one’s complement of the source
operand.

9-22

VAX Instruction Set

MNEG

MNEG

Move Negated

FORMAT opcode src.rx, dst.wx
condition codes
N +«— dst LSS 0;
z +— dst EQL 0;
\" +— {integer overflow};
C +«—— dst NEQ 0;
exceptions integer overflow
opcodes
8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Long
DESCRIPTION The destination operand is replaced by the negative of the source operand.

Note

Integer overflow occurs if the source operand is the largest negative
integer (which has no positive counterpart). On overflow, the destination

operand is replaced by the source operand.

9-23

VAX Instruction Set

MOV
MOV
Move
FORMAT opcode sre.rx, dst.wx

condition codes

N «— dst LSS 0;
z «— dst EQL 0;
\ — 0;
C G
exceptions None.
opcodes
90 MOVB Move Byte
BO MOvw Move Word
DO MOVL Move Long
7D MovQ Move Quad
7DFD MOVO Move Octa
DESCRIPTION The destination operand is replaced by the source operand.

9-24

VAX Instruction Set
MOVZ

Move Zero-Extended
FORMAT opcode src.rx, dst.wy
condition codes
N — 0;
Z +«— dst EQL 0;
\ «— 0;
C +— C;
exceptions None.
opcodes
9B MOVZBW Move Zero-Extended Byte to Word
9A MOVZBL Move Zero-Extended Byte to Long
3C MOVZWL Move Zero-Extended Word to Long

DESCRIPTION For MOVZBW, bits 7:0 of the destination operand are replaced by the
source operand; bits 15:8 are replaced by zero. For MOVZBL, bits 7:0 of
the destination operand are replaced by the source operand; bits 31:8 are
replaced by zero. For MOVZWL, bits 15:0 of the destination operand are
replaced by the source operand; bits 31:16 are replaced by zero.

9-25

VAX Instruction Set

MUL
MUL
Multiply
FORMAT 2o0perand: opcode mulr.rx, prod.mx

condition codes

exceptions

opcodes

3operand: opcode mulr.rx, muld.rx, prod.wx

N «—— prod LSS 0;
Z «—— prod EQL 0;
\ +«— {integer overflow};
C «— 0;

integer overflow
84 MULB2 Multiply Byte 2 Operand
85 MULB3 Multiply Byte 3 Operand
A4 MULW2 Multiply Word 2 Operand
A5 MULW3 Multiply Word 3 Operand
C4 MULL2 Multiply Long 2 Operand
C5 MULL3 Multiply Long 3 Operand

DESCRIPTION

9-26

_ L]
In 2 operand format, the product operand is multiplied by the multiplier
operand, and the product operand is replaced by the low half of the double-
length result. In 3 operand format, the multiplicand operand is multiplied
by the multiplier operand, and the product operand is replaced by the low
half of the double-length resulit.

Note

Integer overflow occurs if the high half of the double-length result is not
equal to the sign extension of the low half of the double-length result.

VAX Instruction Set
PUSHL

PUSHL

Push Long

FORMAT

condition codes

opcode src.rl

N «——— src LSS 0;
z «— src EQL 0;
\ +«— 0;
C «— C;
exceptions None.
opcodes
DD PUSHL Push Long
R
DESCRIPTION The longword source operand is pushed on the stack.

Notes
1 PUSHL is equivalent to MOVL sre, —(SP), but is 1 byte shorter.

2 POPL is not a VAX instruction. However, the assembler recognizes the
inclusion of POPL destination in a program, for which it generates the
code for MOVL (SP)+,destination.

9-27

VAX Instruction Set

ROTL

ROTL

Rotate Long

FORMAT

condition codes

opcode cnt.rb, src.rl, dst.wl

N «——dstlLSS0;
Z «—dstEQLO;
\% «— 0;
C G
exceptions None.
opcodes
9C ROTL Rotate Long
DESCRIPTION The source operand is rotated logically by the number of bits specified by

9-28

the count operand, and the destination operand is replaced by the result.
The source operand is unaffected. A positive count operand rotates to the
left. A negative count operand rotates to the right. A zero count operand
replaces the destination operand with the source operand.

VAX Instruction Set
SBWC

SBWC

Subtract with Carry

FORMAT opcode sub.rl, dif. ml
condition codes
N «— dif LSS 0;
4 +—— dif EQL 0;
\ «— {integer overflow};
Cc «— {borrow into most significant bit};
exceptions integer overflow
opcodes
D9 SBWC Subtract with carry

DESCRIPTION The subtrahend operand and the contents of the condition code C-bit are
subtracted from the difference operand, and the difference operand is
replaced by the result.

Notes

1 On overflow, the difference operand is replaced by the low-order bits of
the true result.

2 The two subtractions in the operation are performed simultaneously.

9-29

VAX Instruction Set

SuB

SUB

Subtract

FORMAT

condition codes

2operand: opcode
3operand: opcode

sub.rx, dif. mx
sub.rx, min.rx, dif.wx

N «— dif LSS 0;
z «— dif EQL 0;
\ +— {integer overflow};
C «— {borrow into most significant bit};
exceptions integer overflow
opcodes
82 SuBB2 Subtract Byte 2 Operand
83 SUBB3 Subtract Byte 3 Operand
A2 SUBW2 Subtract Word 2 Operand
A3 SUBWS3 Subtract Word 3 Operand
c2 SuBL2 Subtract Long 2 Operand
C3 SUBL3 Subtract Long 3 Operand
DESCRIPTION In 2 operand format, the subtrahend operand is subtracted from the

9-30

difference operand, and the difference operand is replaced by the result.
In 3 operand format, the subtrahend operand is subtracted from the
minuend operand, and the difference operand is replaced by the result.

Note

Integer overflow occurs if the input operands to the subtract are of
different signs and the sign of the result is the sign of the subtrahend.
On overflow, the difference operand is replaced by the low-order bits of the
true result.

VAX Instruction Set
TST

Test
N -

FORMAT opcode src.rx
condition codes

N «—— src LSS 0;

Z «— src EQL 0;

VvV «— 0;

C «— 0;
exceptions None.
opcodes

95 TSTB Test Byte

B5 TSTW Test Word

D5 TSTL Test Long
DESCRIPTION The condition codes are modified according to the value of the source

operand.

Note
The operand sre is equivalent to CMPx src, SM#0, but is 1 byte shorter.

9-31

VAX Instruction Set

XOR
XOR
Exclusive OR
FORMAT 2operand: opcode mask.rx, dst.mx

3operand: opcode mask.rx, src.rx, dst.wx

condition codes

N «—dstLSSOQ;
Z +—— dst EQL 0;
\ — 0;
C — C;

exceptions None.

opcodes
8C XORB2 Exclusive OR Byte 2 Operand
8D XORB3 Exclusive OR Byte 3 Operand
AC XORW2 Exclusive OR Word 2 Operand
AD XORW3 Exclusive OR Word 3 Operand
CC XORL2 Exclusive OR Long 2 Operand
CD XORL3 Exclusive OR Long 3 Operand

DESCRIPTION In 2 operand format, the result of the logical XOR on the mask operand
and the destination operand replaces the destination operand. In 3
operand format, the result of the logical XOR on the mask operand and
the source operand replaces the destination operand.

9-32

VAX Instruction Set

XOR
9.2.2 Address Instructions
The following instructions are described in this section.
Number of
Description and Opcode Instructions
1. Move Address 5
MOVA(B,W,L=F,Q=D=G,0=H} src.ax, dst.wl
2. Push Address 5

PUSHA({B,W,L=F,Q=D=G,0=H} src.ax, {-(SP).wl}

9-33

VAX Instruction Set

MOVA

MOVA

Move Address

FORMAT opcode src.ax, dst.wl
condition codes
N «—dstLSSO0;
z «— dst EQL 0;
\ «— 0;
C «— C;
exceptions None.
opcodes
9E MOVAB Move Address Byte
3E MOVAW Move Address Word
DE MOVAL Move Address Long
MOVAF Move Address F_floating
7E MOVAQ Move Address Quad
MOVAD Move Address D_floating
MOVAG Move Address G_floating
7EFD MOVAH Move Address H_floating
MOVAO Move Address Octa
DESCRIPTION The destination operand is replaced by the source operand. The context

9-34

in which the source operand is evaluated is given by the data type of the
instruction. The operand whose address replaces the destination operand
is not referenced.

Note

The access type of the source operand is address, which causes the address

of the specified operand to be moved.

VAX Instruction Set

PUSHA

PUSHA

Push Address

FORMAT opcode src.ax
condition codes
N +«—— src LSS 0;
z +«— src EQL 0;
\ — 0;
C +— C;
exceptions None.
opcodes
9F PUSHAB Push Address Byte
3F PUSHAW Push Address Word
DF PUSHAL Push Address Long,
PUSHAF Push Address F_floating
7F PUSHAQ Push Address Quad,
PUSHAD Push Address D_floating,
PUSHAG Push Address G_floating
7FFD PUSHAH Push Address H_floating
PUSHAO Push Address Octa
DESCRIPTION The source operand is pushed on the stack. The context in which the

source operand is evaluated is given by the data type of the instruction.

The operand whose address is pushed is not referenced.

Notes

1 PUSHAx sre is equivalent to MOVAx sre, —-(SP), but is one byte
shorter.

2 The source operand is of address access type, which causes the address
of the specified operand to be pushed.

9-35

VAX Instruction Set

PUSHA

9.2.3 Variable-Length Bit Field Instructions
A variable-length bit field is specified by the following three operands:

9-36

1
2

A longword position operand.

A byte field size operand in the range 0 to 32; if out of this range, a
reserved operand fault occurs.

A base address. Use the position operand to locate the bit field relative
to this base address. The address is obtained from an operand of
address access type. However, unlike other instances of operand
specifiers of address access type, register mode can be designated in
the operand specifier. In this case, the field is contained in the register
n designated by the operand specifier (or register n+1 concatenated
with register n). (See Chapter 8.) If the field is contained in a register
and the size operand is not zero, the position operand must have a
value in the range 0 to 31, or a reserved operand fault occurs.

Zero bytes are referenced if the field size is zero.

The following instructions are described in this section.

Number of
Description and Opcode Instructions
1, Compare Field 1
CMPV pos.rl, size.rb, base.vb, {field.rv},
src.rl
2. Compare Zero-Extended Field 1
CMPZV pos.rl, size.rb, base.vb, {field.rv},
sre.r
3. Extract Field 1
EXTV pos.rl, size.rb, base.vb, {field.rv},
dst.wl
4. Extract Zero-Extended Field 1
EXTZV pos.rl, size.rb, base.vb, {field.rv},
dst.wl
5. Find First 2
FF{S,C} startpos.rl, size.rb, base.vb,
{field.rv}, findpos.wl
6. Insert Field 1
INSV sre.rl, pos.rl, size.rb, base.vb,
{field.wv}

VAX Instruction Set
PUSHA

The following variable-length bit field instructions are described in
Section 9.2.4:

Number of
Description and Opcode Instructions
1. Branch on Bit 2
BB{S,C} pos.rl, base.vb, displ.bb,
{field.rv}
2. Branch on Bit (and modify without interlock) 4
BB{S,C}{S,C} pos.rl, base.vb, displ.bb,
{field.mv}
3. Branch on Bit (and modify) Interlocked 2
BB{SS,CC}! pos.rl, base.vb, displ.bb,
{field.mv}

9-37

VAX Instruction Set

CMP
CMP
Compare Field
FORMAT opcode pos.rl, size.rb, base.vb, src.rl

condition codes

N +«— tmp LSS src;

4 «— tmp EQL srg;

\ «— 0;

C «— tmp LSSU src;
exceptions reserved operand
opcodes

EC CMPV Compare Field

ED CMPZV Compare Zero-Extended Field
DESCRIPTION The field specified by the position, size, and base operands is compared

9-38

with the source operand. For CMPYV, the source operand is compared with
the sign-extended field. For CMPZV, the source operand is compared with
the zero-extended field. The only action is to affect the condition codes.

Notes
1 A reserved operand fault occurs if:
* size GTRU 32

* pos GTRU 31, size NEQ 0, and the field is contained in the
registers

2 On a reserved operand fault, the condition codes are
UNPREDICTABLE.

VAX Instruction Set
EXT

EXT

Extract Field

FORMAT opcode pos.rl, size.rb, base.vb, dst.wi
condition codes

N «—dstlSSO;

p4 «~— dst EQL 0;

\' «— 0;

C —C;
exceptions reserved operand
opcodes

EE EXTV Extract Field

EF EXTZV Extract Zero-Extended Field
DESCRIPTION For EXTV, the destination operand is replaced by the sign-extended

field specified by the position, size, and base operands. For EXTZV, the
destination operand is replaced by the zero-extended field specified by the
position, size, and base operands. If the size operand is zero, the only
action is to replace the destination operand with zero and to modify the
condition codes.

Notes

1 A reserved operand fault occurs if:
* size GTRU 32

e pos GTRU 31, size NEQ 0, and the field is contained in the
registers

2 On a reserved operand fault, the destination operand is unaffected,
and the condition codes are UNPREDICTABLE.

9-39

VAX Instruction Set
FF

FF

Find First
FORMAT opcode startpos.rl, size.rb, base.vb, findpos.wi
condition codes
N «— 0;
Y4 «— {bit not foundy};
Vv «— 0;
C — 0;
exceptions reserved operand
opcodes
EB FFC Find First Clear
EA FFS Find First Set

DESCRIPTION A field specified by the start position, size, and base operands is extracted.
Starting at bit 0 and extending to the highest bit in the field, the field
is tested for a bit in the state indicated by the instruction. If a bit in
the indicated state is found, the find position operand is replaced by
the position of the bit, and the Z condition code bit is cleared. If no bit
in the indicated state is found, the find position operand is replaced by
the position (relative to the base) of a bit one position to the left of the
specified field, and the Z condition code bit is set. If the size operand is
zero, the find position operand is replaced by the start position operand,
and the Z condition code bit is set.

Notes
1 A reserved operand fault occurs if:
* size GTRU 32

¢ startpos GTRU 31, size NEQ 0, and the field is contained in the
registers

2 On a reserved operand fault, the find position operand is unaffected,
and the condition codes are UNPREDICTABLE.

VAX Instruction Set
INSV

insert Field
FORMAT opcode src.rl, pos.rl, size.rb, base.vb
condition codes
N «— N;
Z — Z;
Vv —V;
C «— C;
exceptions reserved operand
opcodes
FO INSV Insert Field

DESCRIPTION The field specified by the position, size, and base operands is replaced by
bits size — 1 : 0 of the source operand. If the size operand is zero, the
instruction has no effect.

Notes
1 A reserved operand fault occurs if:
e size GTRU 32

» pos GTRU 31, size NEQ 0, and the field is contained in the
registers

2 On a reserved operand fault, the field is unaffected, and the condition
codes are UNPREDICTABLE.

VAX Instruction Set

INSV

9.2.4 Control Instructions

In most implementations of the VAX architecture, improved execution
speed will result if the target of a control instruction is on an aligned
longword boundary.

The following instructions are described in this section.

Number of
Description and Opcode Instructions
1. Add Compare and Branch 7
ACB{B,W,L,F,D,G,H} limit.rx, add.rx,
index.mx, displ.ow
Compare is LE on positive add, GE on
negative add.
2. Add One and Branch Less Than or Equal 1
AOBLEQ limit.rl, index.ml, displ.bb
3. Add One and Branch Less Than 1
AOBLSS limit.rl, index.ml, displ.bb
4. Conditional Branch 12
Condition Name
LSS Less Than
LEQ Less Than or Equal
EQL, EQLU Equal, Equal Unsigned
NEQ, NEQU Not Equal, Not Equal Unsigned
GEQ Greater Than or Equal
GTR Greater Than
LSSy, CS Less Than Unsigned, Carry Set
LEQU Less Than or Equal Unsigned
GEQU, CC Greater Than or Equal Unsigned,
Carry Clear
GTRU Greater Than Unsigned
Vs Overflow Set
vC Overflow Clear
5. Branch on Bit 2
BB(S,C} pos.rl, base.vb, displ.bb,
{field.rv}
6. Branch on Bit 4
(and modify without interlock)
BB{S,CHS.C} pos.rl, base.vb, displ.bb,
{field.mv}
7. Branch on Bit (and modify) Interiocked 2
BB{SS,CC}l pos.rl, base.vb, displ.bb,
{field.mv}

VAX Instruction Set

SOBGTR index.ml, displ.bb

INSV
Number of
Description and Opcode Instructions
8. Branch on Low Bit 2
BLB{S,C} src.rl, displ.bb
9. Branch with {Byte, Word} Displacement 2
BR{B,W} displ.bx
10. Branch to Subroutine with {Byte, Word} 2
Displacement BSB{B,W} displ.bx, {—(SP).wi}
11. Case 3
CASE(B,W,L} selector.rx, base.rx,
limit.rx, displ.bw-list
12. Jump 1
JMP dst.ab
13. Jump to Subroutine 1
JSB dst.ab, {—(SP).wl}
14, Return from Subroutine 1
RSB {(SP)+.rl}
15. Subtract One and Branch Greater Than 1
or Equal SOBGEQ index.ml, displ.bb
16. Subtract One and Branch Greater Than 1

VAX Instruction Set

ACB

ACB

Add Compare and Branch

FORMAT

condition codes

opcode limit.rx, add.rx, index.mx, displ.bw

N «— index LSS 0;
4 «— index EQL 0;
\ +— {integer overflow};
C — C;
exceptions integer overflow
floating overflow
floating underflow
reserved operand
opcodes
9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
F1 ACBL Add Compare and Branch Long
4F ACBF Add Compare and Branch F_floating
4FFD ACBG Add Compare and Branch G_floating
6F ACBD Add Compare and Branch D_floating
6FFD ACBH Add Compare and Branch H_floating
DESCRIPTION The addend operand is added to the index operand and the index operand

is replaced by the result. The index operand is compared with the limit
operand. If the addend operand is positive (or zero) and the comparison is
less than or equal to zero, or if the addend is negative and the comparison
is greater than or equal to zero, the sign-extended branch displacement is
added to the program counter (PC), and the PC is replaced by the result.

Notes

1 ACB efficiently implements the general FOR or DO loops in high-level
languages, since the sense of the comparison between index and limit
is dependent on the sign of the addend.

2 On integer overflow, the index operand is replaced by the low-order
bits of the true result. Comparison and branch determination proceed
normally on the updated index operand.

3 On floating underflow, if FU is clear, the index operand is replaced by
zero, and comparison and branch determination proceed normally. A
fault occurs if FU is set, and the index operand is unaffected.

VAX Instruction Set
ACB

On floating overflow, the instruction takes a floating overflow fault,
and the index operand is unaffected.

On a reserved operand fault, the index operand is unaffected, and
condition codes are UNPREDICTABLE.

Except for the circumstance described in note 5, the C-bit is unaffected.

VAX Instruction Set

AOBLEQ

AOBLEQ

Add One and Branch Less Than or Equal

FORMAT

condition codes

exceptions

opcodes

opcode limit.rl, index.ml, displ.bb

«— index LSS 0;
«—— index EQL 0;
«— {integer overflow};

O < N Z

— C;

integer overflow

F3 AOBLEQ Add One and Branch Less Than or Equal

DESCRIPTION

One is added to the index operand, and the index operand is replaced

by the result. The index operand is compared with the limit operand. If
the comparison is less than or equal to zero, the sign-extended branch
displacement is added to the program counter (PC), and the PC is replaced
by the result.

Notes

1 Integer overflow occurs if the index operand before addition is the
largest positive integer. On overflow, the index operand is replaced by
the largest negative integer, and the branch is taken.

2 The C-bit is unaffected.

VAX Instruction Set
AOBLSS

AOBLSS

Add One and Branch Less Than

FORMAT

condition codes

exceptions

opcodes

opcode limit.rl, index.ml, displ.bb

«—— index LSS 0;
+— index EQL O;
«—— {integer overflow};

O < N Z2

— C;

integer overflow

F2 AOBLSS Add One and Branch Less Than

DESCRIPTION

One is added to the index operand and the index operand is replaced by
the result. The index operand is compared with the limit operand. If the
comparison result is less than zero, the sign-extended branch displacement
is added to the program counter (PC), and the PC is replaced by the result.

Notes

1 Integer overflow occurs if the index operand before addition is the
largest positive integer. On overflow, the index operand is replaced by
the largest negative integer, and thus (unless the limit operand is the
largest negative integer), the branch is taken.

2 The C-bit is unaffected.

VAX Instruction Set

B
B
Branch on (condition)
FORMAT opcode displ.bb
condition codes
N «— N;
Z — Z;
\' — V;
C —C
exceptions None.
opcodes
14 {NORZ} EQLO BGTR Branch on Greater Than (signed)
15 {NOR Z} EQL 1 BLEQ Branch on Less Than or Equal
(signed)
12 ZEQLO BNEQ, Branch on Not Equal (signed)
BNEQU Branch on Not Equal Unsigned
13 Z EQL 1 BEQL, Branch on Equal (signed)
BEQLU Branch on Equal Unsigned
18 NEQLO BGEQ Branch on Greater Than or Equal
(signed)
19 N EQL 1 BLSS Branch on Less Than (signed)
1A {CORZ}EQLO BGTRU Branch on Greater Than Unsigned
1B {CORZ}EQL 1 BLEQU Branch Less Than or Equal Unsigned
1C VEQLO BvVC Branch on Overflow Clear
1D V EQL 1 BvSs Branch on Overflow Set
1E CEQLO BGEQU, Branch on Greater Than or Equal
Unsigned
BCC Branch on Carry Clear
1F CEQL1 BLSSU, Branch on Less Than Unsigned
BCS Branch on Carry Set
N
DESCRIPTION The condition codes are tested. If the condition indicated by the

instruction is met, the sign-extended branch displacement is added to
the program counter (PC), and the PC is replaced by the result.

VAX Instruction Set
B

Notes

The VAX conditional branch instructions permit considerable flexibility in
branching but require care in choosing the correct branch instruction. The
conditional branch instructions are best seen as three overlapping groups:

1

Overflow and Carry Group

BVS V EQL 1
BVC VEQLO
BCS CEQL 1
B8CC CEQLO

Typically, you would use these instructions to check for overflow (when
overflow traps are not enabled), for multiprecision arithmetic, and for
other special purposes.

Unsigned Group

BLSSU CEQL1

BLEQU {CORZ} EQL 1

BEQLU ZEQL 1

BNEQU ZEQLO

BGEQU CEQLO

BGTRU {CORZ EQLO

These instructions typically follow integer and field instructions where

the operands are treated as unsigned integers, address instructions,
and character string instructions.

Signed Group

BLSS N EQL 1

BLEQ {N OR Z} EQL 1
BEQL ZEQL1

BNEQ ZEQLO

BGEQ N EQLO

BGTR {NOR Z} EQL O

These instructions typically follow floating-point instructions, decimal
string instructions, and integer and field instructions where the
operands are being treated as signed integers.

VAX Instruction Set

BB
Branch on Bit
FORMAT opcode pos.rl, base.vb, displ.bb
condition codes
N «— N;
Z —Z;
Vv «— V;
Cc «— C;
exceptions reserved operand
opcodes
EO BBS Branch on Bit Set
E1 BBC Branch on Bit Clear
DESCRIPTION The single bit field specified by the position and base operands is tested.

9-50

If it is in the test state indicated by the instruction, the sign-extended
branch displacement is added to the program counter (PC), and the PC is
replaced by the result.

Notes

1 A reserved operand fault occurs if pos GTRU 31 and the bit specified
is contained in a register.

2 On a reserved operand fault, the condition codes are
UNPREDICTABLE.

VAX Instruction Set

BB

Branch on Bit (and modify without interlock)

FORMAT opcode pos.rl, base.vb, displ.bb
condition codes
N — N;
A — Z;
V «— V;
C «— C;
exceptions reserved operand
opcodes
E2 BBSS Branch on Bit Set and Set
E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
E5 BBCC Branch on Bit Clear and Clear
DESCRIPTION The single bit field specified by the position and base operands is tested.

If it is in the test state indicated by the instruction, the sign-extended
branch displacement is added to the program counter (PC), and the PC is
replaced by the result. Regardless of whether the branch is taken or not,

the tested bit is put in the new state as indicated by the instruction.

Notes

1

A reserved operand fault occurs if pos GTRU 31 and the bit is
contained in a register.

On a reserved operand fault, the field is unaffected, and the condition
codes are UNPREDICTABLE.

The modification of the bit is not an interlocked operation. See BBSSI
and BBCCI for interlocking instructions.

9-51

VAX Instruction Set

BB

BB

Branch on Bit Interlocked

FORMAT opcode pos.rl, base.vb, displ.bb
condition codes
N «— N;
Z — Z;
\ — V;
C — C;
exceptions reserved operand
opcodes
E6 BBSSI Branch on Bit Set and Set Interlocked
E7 BBCCI Branch on Bit Clear and Clear Interlocked
DESCRIPTION The single bit field specified by the position and base operands is tested. If

9-52

it is in the test state indicated by the instruction, the sign-extended branch
displacement is added to the program counter (PC), and the PC is replaced
by the result. Regardless of whether the branch is taken, the tested bit is
put in the new state as indicated by the instruction. If the bit is contained
in memory, the reading of the state of the bit and the setting of the bit to
the new state is an interlocked operation. No other processor or I/O device
can do an interlocked access on this bit during the interlocked operation.

Notes

1 A reserved operand fault occurs if pos GTRU 31 and the specified bit
is contained in a register.

2 On a reserved operand fault, the field is unaffected, and the condition
codes are UNPREDICTABLE.

3 Except for memory interlocking, BBSSI is equivalent to BBSS, and
BBCCI is equivalent to BBCC.

4 This instruction is designed to modify interlocks with other processors
or devices. For example, to implement “busy waiting”:

18: BBSSI bit,base, 1$

VAX Instruction Set
BLB

Branch on Low Bit
FORMAT opcode src.rl, displ.bb
condition codes
N «— N;
V4 — Z;
\' — V;
(0] «— C;
exceptions None.
opcodes
ES8 BLBS Branch on Low Bit Set
E9 BLBC Branch on Low Bit Clear

DESCRIPTION The low bit (bit 0) of the source operand is tested. If it is equal to the test
state indicated by the instruction, the sign-extended branch displacement
is added to the program counter (PC), and the PC is replaced by the result.

9-53

VAX Instruction Set

BR
Branch
FORMAT opcode displ.bx
condition codes
N — N;
Z — Z;
\" —V;
C — C;
exceptions None.
opcodes
11 BRB Branch with Byte Displacement
31 BRW Branch with Word Displacement

DESCRIPTION The sign-extended branch displacement is added to the program counter
(PC), and the PC is replaced by the result.

9-54

VAX Instruction Set
BSB

BSB

Branch to Subroutine

FORMAT

condition codes

opcode displ.bx

N «— N;

Z —2Z;

\) — V;

C «— C;
exceptions None.
opcodes

10 BSBB Branch to Subroutine with Byte Displacement

30 BSBW Branch to Subroutine with Word Displacement
DESCRIPTION The program counter (PC) is pushed on the stack as a longword. The sign-

extended branch displacement is added to the PC, and the PC is replaced

by the result.

9-55

VAX Instruction Set

CASE

CASE

Case

FORMAT

opcode selector.rx, base.rx, limit.rx,

displ[0].bw,
veey
displflimit].bw
condition codes
N +—— tmp LSS limit;
Z «—— tmp EQL limit;
\' «— 0;
C «— tmp LSSU limit;
exceptions None.
opcodes
8F CASEB Case Byte
AF CASEW Case Word
CF CASEL Case Long
DESCRIPTION The base operand is subtracted from the selector operand, and the result

9-56

replaces a temporary operand. The temporary operand is compared

with the limit operand; if it is less than or equal unsigned, a branch
displacement selected by the temporary value is added to the program
counter (PC), and the PC is replaced by the result. Otherwise, twice the
sum of the limit operand and 1 is added to the PC, and the PC is replaced
by the result. This operation causes the PC to be moved past the array of
branch displacements. Regardless of the branch taken, the condition codes
are modified as a result of the comparison of the temporary operand with
the limit operand.

Notes

1 After operand evaluation, the PC points at disp1[0], not to the next
instruction. The branch displacements are relative to the address of
disp1[0].

2 The selector and base operands can both be considered as either signed
or unsigned integers.

VAX Instruction Set
CASE

In the following example, the CASEB instruction selects one of eight
displacements immediately following the instruction. The example is

for illustration only. An actual instruction would use run-time variables
instead of the assembly-time static values shown. Also, in an actual
instruction, the displacements selected by the CASEB instruction would be
branches to various routines.

.PSECT CODE, PIC, SHR, WRT, EXE, LONG
TABIND: .WORD 4

.ENTRY START, ~M<>
CLRW R4
CLRW R5
MOVW #0,R4
MOVW #7,R5
CASEB TABIND, R4,R5
TAB: .WORD 1$-TAB
.WORD 2$-TAB
.WORD 3$-TAB
.WORD 4$-TAB
.WORD 5$-TAB
.WORD 65-TAB
.WORD 7$-TAB
BRB 9s
1$: .ASCII /AT 1/
28: .ASCII /AT 2/
38%: LASCII /AT 3/
45: LASCII /AT 4/
5%: LASCII /AT 5/
65: LASCII /AT 6/
YER .ASCII /AT 7/
8$: .ASCII /AT 8/
9s: S$EXIT S
.END START

The objective of the CASE instruction is to transfer control to one of many
possible locations depending on the value of “selector,” or TABIND, as
shown in the example. These locations are labeled in the example from 1$:
to 8%..

In the example, the table contains eight branch displacements. In all
cases, the limit operand (here shown as R5, which contains a 7) is one less
than the number of displacements (8) in the table. The base operand (here

shown as R4, which contains a zero) is the lowest permissible value for
TABIND.

The CASE instruction subtracts base (contents of R4, a zero) from the
value of TABIND to produce a zero-origin index into the table. The limit
(contents of R5, a 7) is compared with this index to ensure that the table
limit is not exceeded.

After operand evaluation, the program counter (PC) points to TAB:.
The locations to which branching occurs are represented in the table as
displacements. The displacement in the table selected by TABIND is
added to the PC to form a destination address. The destination selected
in the example is at location 5$:. In practical usage, this location would
contain a branch to a specific routine.

9-57

VAX Instruction Set

JMP
JMP

Jump
FORMAT opcode dstab
condition codes

N — N;

Z «— Z;

\ — V;

C +«— C;
exceptions None.
opcodes

17 JMP Jump

DESCRIPTION The program counter (PC) is replaced by the destination operand.

9-58

VAX Instruction Set
JSB

JSB

Jump to Subroutine

FORMAT opcode dstab
condition codes
N «— N;
Z — Z;
\ —V;
cC G
exceptions None.
opcodes
16 JSB Jump to Subroutine
DESCRIPTION The program counter (PC) is pushed onto the stack as a longword. The PC

is replaced by the destination operand.

Note

Because the operand specifier conventions cause the evaluation of the
destination operand before saving the PC, you can use JSB for coroutine
calls with the stack used for linkage. The form of this call is:

JSB @(SP)+

9-59

VAX Instruction Set

RSB

Return from Subroutine
FORMAT opcode
condition codes

N «— N;

Z — Z;

\Y — V;

C — C;
exceptions None.
opcodes

05 RSB Return from Subroutine

DESCRIPTION The program counter (PC) is replaced by a longword popped from the
stack.

Notes

1 Use RSB to return from subroutines called by the BSBB, BSBW, and
JSB instructions.

2 RSB is equivalent to JMP @(SP)+, but is 1 byte shorter.

9-60

VAX Instruction Set

SOBGEQ
Subtract One and Branch Greater Than or Equal
FORMAT opcode index.ml, displ.bb
condition codes
N +«— index LSS 0;
4 «— index EQL 0;
\ +— {integer overflow};
C +«— C;
exceptions integer overflow
opcodes
F4 SOBGEQ Subtract One and Branch Greater Than or Equal
DESCRIPTION One is subtracted from the index operand, and the index operand is

replaced by the result. If the index operand is greater than or equal to
zero, the sign-extended branch displacement is added to the program
counter (PC), and the PC is replaced by the result.

Notes

1 Integer overflow occurs if the index operand before subtraction is the
largest negative integer. On overflow, the index operand is replaced by
the largest positive integer; therefore, the branch is taken.

2 The C-bit is unaffected.

9-61

VAX Instruction Set

SOBGTR

SOBGTR

Subtract One and Branch Greater Than

FORMAT opcode index.ml, displ.bb
condition codes
N «— index LSS 0;
Z +«—— index EQL 0;
\ +«— {integer overflow};
C «— C;
exceptions integer overflow
opcodes
F5 SOBGTR Subtract One and Branch Greater Than
DESCRIPTION One is subtracted from the index operand, and the index operand is

9-62

replaced by the result. If the index operand is greater than zero, the sign-
extended branch displacement is added to the program counter (PC), and
the PC is replaced by the result.

Notes

1 Integer overflow occurs if the index operand before subtraction is the
largest negative integer. On overflow, the index operand is replaced by
the largest positive integer, and thus, the branch is taken.

2 The C-bit is unaffected.

9.2.5

VAX Instruction Set
SOBGTR

Procedure Call Instructions

The following three instructions implement a standard procedure calling
interface:

e CALLG
* CALLS
e RET

CALLG and CALLS call the procedure. The RETURN instruction returns
from the procedure. Refer to the Introduction to VMS System Routines for
the procedure calling standard.

The CALLG instruction calls a procedure with the argument list in an
arbitrary location.

The CALLS instruction calls a procedure with the argument list on the
stack. Upon return after a CALLS instruction, this list is automatically
removed from the stack. Both call instructions specify the address of the
entry point of the procedure being called. The entry point is assumed
to consist of a word called the entry mask followed by the procedure’s
instructions. The procedure terminates by executing a RET instruction.

The entry mask specifies the register use and overflow enables of the
subprocedure.

15 14 1312 11 0
D|I |MBZ Registers
VIV

ZK-1162A-GE

At the occurrence of one of the call instructions, the stack is aligned

to a longword boundary, and the trap enables in the processor status
longword (PSW) are set to a known state to ensure consistent behavior of
the called procedure. Integer overflow enable and decimal overflow enable
are affected according to bits 14 and 15 of the entry mask, respectively.
Floating underflow enable is cleared. Registers R11 to RO, specified by bits
11 to 0, respectively, are saved on the stack and are restored by the RET
instruction. In addition, the program counter (PC), stack pointer (SP),
frame pointer (FP), and argument pointer (AP) are always preserved by
the CALL instructions and restored by the RET instruction.

All external procedure calls generated by standard Digital language
processors and all intermodule calls to major VAX software subsystems
comply with the procedure calling software standard (see the VAX
Procedure Calling and Condition Handling Standard in the Introduction to
VMS System Routines). The procedure calling standard requires that all
registers in the range R2 to R11 used in the procedure must appear in the
mask. RO and R1 are not preserved by any called procedure that complies
with the procedure calling standard.

9-63

VAX Instruction Set

SOBGTR

9-64

To preserve the state, the CALL instructions form a structure on the stack
termed a call frame or stack frame. The call frame contains the saved
registers, the saved PSW, the register save mask, and several control bits.
The frame also includes a longword that the CALL instructions clear.

The system uses this longword to implement the VMS condition handling
facility (see the VAX Procedure Calling and Condition Handling Standard
in the Introduction to VMS System Routines). At the end of execution of
the CALL instruction,the frame pointer (FP) contains the address of the
stack frame. The RET instruction uses the contents of FP to find the stack
frame and the restore state. The condition handling facility assumes that
FP always points to the stack frame.

The stack frame has the following format:

Condition Handler (Initially 0) 1 (FP)
spAlslo] Maskett0 | saved PSW<15:5> 0
Saved AP
Saved FP
Saved PC
Saved RO (...)

Saved R11 (... |

(0 to 3 bytes specified by SPA, Stack Pointer Alignment)
S = set if CALLS; clear if CALLG.

ZK-1163A-GE

Note that the saved condition codes and the saved trace enable (PSW<T>)
are cleared.

The contents of the frame PSW<3:0> at the time RET is executed will
become the condition codes resulting from the execution of the procedure.
Similarly, the content of the frame PSW<4> at the time the RET is
executed will become the PSW<T> bit.

The following instructions are described in this section.

Number of

Description and Opcode Instructions
1. Call Procedure with General Argument List 1

CALLG arglist.ab, dst.ab, {-(SP).w*}
2. Call Procedure with Stack Argument List 1

CALLS numarg.rl, dst.ab, {-(SP).w*}
3. Return from Procedure 1

RET {(SP)+.r"}

VAX Instruction Set

CALLG
Call Procedure with General Argument List
FORMAT opcode arglist.ab, dst.ab
condition codes
N «— 0;
Y4 «— 0;
v «— 0
C — 0;
exceptions reserved operand
opcodes
FA CALLG Call Procedure with General Argument List
DESCRIPTION The stack pointer (SP) is saved in a temporary register. Bits 1:0 are

replaced by zero, so that the stack is longword aligned. The procedure
entry mask is scanned from bit 11 to bit 0, and the contents of registers
whose numbers correspond to set bits in the mask are pushed on the
stack as longwords. The program counter (PC), frame pointer (FP),

and argument pointer (AP) are pushed on the stack as longwords. The
condition codes are cleared. A longword containing the saved low 2 bits
of the SP in bits 31:30, a zero in bits 29 and 28, the low 12 bits of the
procedure entry mask in bits 27:16, and the processor status word (PSW)
in bits 15:0 with T cleared are pushed on the stack. A longword zero is
pushed on the stack. The FP is replaced by the SP. The AP is replaced
by the arglist operand. The trap enables in the PSW are set to a known
state. Integer overflow and decimal overflow are affected according to bits
14 and 15 of the entry mask, respectively; floating underflow is cleared.
The T-bit is unaffected. The PC is replaced by the sum of destination
operand plus 2, which transfers control to the called procedure at the byte
beyond the entry mask.

: (SP)
Stack : (FP)
Frame
(0 to 3 bytes specified by SPA)
ZK-1164A-GE

9-65

VAX Instruction Set

CALLG

9-66

Notes

1

If bits 13:12 of the entry mask are not zero, a reserved operand fault
oceurs.

On a reserved operand fault, condition codes are UNPREDICTABLE.

The procedure calling standard and the condition handling facility
require the following register saving conventions:

¢ RO and R1 are always available for function return values and are
never saved in the entry mask.

* All registers R2 to R11 that are modified in the called procedure
must be preserved in the mask.

Refer to the VAX Procedure Calling and Condition Handling Standard
in the Introduction to VMS System Routines.

VAX Instruction Set

CALLS
Call Procedure with Stack Argument List
FORMAT opcode numarg.rl, dst.ab
condition codes
N +— 0;
z — 0;
V «— 0;
C 0
exceptions reserved operand
opcodes
FB CALLS Call Procedure with Stack Argument List
DESCRIPTION The numarg operand is pushed on the stack as a longword (byte 0

contains the number of arguments; Digital software uses the high-order
24 bits). The stack pointer (SP) is saved in a temporary register, and
then bits 1:0 of the SP are replaced by zero so that the stack is longword
aligned. The procedure entry mask is scanned from bit 11 to bit 0, and the
contents of registers whose numbers correspond to set bits in the mask
are pushed on the stack. The program counter (PC), frame pointer (FP),
and argument pointer (AP) are pushed on the stack as longwords. The
condition codes are cleared. A longword containing the saved low 2 bits
of the SP in bits 31:30, a 1 in bit 29, a zero in bit 28, the low 12 bits of
the procedure entry mask in bits 27:16, and the processor status word
(PSW) in bits 15:0 with T cleared is pushed on the stack. A longword zero
is pushed on the stack. The FP is replaced by the SP. The AP is set to
the value of the stack pointer after the numarg operand was pushed on
the stack. The trap enables in the PSW are set to a known state. Integer
overflow and decimal overflow are affected according to bits 14 and 15 of
the entry mask, respectively. Floating underflow is cleared. T-Bit is

9-67

VAX Instruction Set

CALLS

9-68

unaffected. The PC is replaced by the sum of destination operand plus
2, which transfers control to the called procedure at the byte beyond the
entry mask. The appearance of the stack after CALLS is executed is:

: (SP)
Stack : (FP)
Frame
(0 to 3 bytes specified by SPA)
| N | : AP)
E N longwords of argument list E
ZK-1165A-GE

Notes

1 If bits 13:12 of the entry mask are not zero, a reserved operand fault
occurs.

2 On a reserved operand fault, the condition codes are
UNPREDICTABLE.

3 Normal use is to push the arglist onto the stack in reverse order
prior to the CALLS. On return, the arglist is removed from the stack
automatically.

4 The procedure calling standard and the condition handling facility
require the following register saving conventions:

* RO and R1 are always available for function return values and are
never saved in the entry mask.

* All registers R2 to R11 that are modified in the called procedure
must be preserved in the entry mask. Refer to the VAX Procedure
Calling and Condition Handling Standard in the Introduction to
VMS System Routines.

VAX Instruction Set
RET

RET

Return from Procedure

FORMAT opcode
condition codes
N «— tmp1<3>;
4 — tmp1<2>;
Y — tmpi<i>;
C «— tmp1<0>;
exceptions reserved operand
opcodes
04 RET Return from Procedure
DESCRIPTION The stack pointer (SP) is replaced by the frame pointer (FP) plus 4. A

longword containing stack alignment bits in bits 31:30, a CALLS/CALLG
flag in bit 29, the low 12 bits of the procedure entry mask in bits 27:16,
and a saved processor status word (PSW) in bits 15:0 is popped from

the stack and saved in a temporary. The program counter (PC), frame
pointer (FP), and argument pointer (AP) are replaced by longwords popped
from the stack. A register restore mask is formed from bits 27:16 of the
temporary. Scanning from bit O to bit 11 of the restore mask, the contents
of registers whose numbers are indicated by set bits in the mask are
replaced by longwords popped from the stack. The SP is incremented by
31:30 of the temporary. The PSW is replaced by bits 15:0 of the temporary.
If bit 29 in the temporary is 1 (indicating that the procedure was called by
CALLS), a longword containing the number of arguments is popped from
the stack. Four times the unsigned value of the low byte of this longword
is added to the SP, and the SP is replaced by the result.

Notes
1 A reserved operand fault occurs if tmp1<15:8> NEQ 0.

2 On a reserved operand fault, the condition codes are
UNPREDICTABLE.

The value of tmp1<28> is ignored.

4 The procedure calling standard and condition handling facility assume
that procedures which return a function value or a status code do so in
RO, or RO and R1. Refer to the VAX Procedure Calling and Condition
Handling Standard in the Introduction to VMS System Routines.

9-69

9.2.6

VAX Instruction Set
RET

Miscellaneous Instructions

The following instructions are described in this section.

Description and Opcode

Number of
Instructions

10.

Bit Clear PSW
BICPSW mask.rw

Bit Set PSW
BISPSW mask.rw

Breakpoint Fault
BPT {-(KSP).w*}
Halt

HALT {-(KSP).w"}

Index
INDEX subscript.rl, low.rl, high.rl,
size.rl, indexin.rl, indexout.wl

Move from PSL
MOVPSL dst.wl

No Operation

NOP

Pop Registers

POPR mask.rw, {(SP)+.r'}

Push Registers
PUSHR mask.rw, {-(SP).w*}

Extended Function Call
XFC {unspecified operands}

1

9-70

VAX Instruction Set
BICPSW

Bit Clear PSW
FORMAT opcode mask.rw
condition codes
N «— N AND {NOT mask<3>};
Z «— Z AND {NOT mask<2>};
Vv +«—— V AND {NOT mask<1>};
C «— C AND {NOT mask<05};
exceptions reserved operand
opcodes
B9 BICPSW Bit Clear PSW

DESCRIPTION The result of the logical AND on processor status word (PSW) and the
one’s complement of the mask operand replaces PSW.

Note

A reserved operand fault occurs if mask<15:8> is not zero. On a reserved
operand fault, the PSW is not affected.

9-71

VAX Instruction Set

BISPSW

Bit Set PSW
FORMAT opcode mask.rw
condition codes

N «— N OR mask<3>;

y4 «— Z OR mask<2>;

V. «+— V OR mask<1>;

C «— C OR mask<0>;
exceptions reserved operand
opcodes

B8 BISPSW Bit Set PSW

DESCRIPTION The result of the logical OR on processor status word (PSW) and the mask
operand replaces PSW.

Note

A reserved operand fault occurs if mask<15:8> is not zero. On a reserved
operand fault, the PSW is not affected.

9-72

VAX Instruction Set
BPT

BPT

Breakpoint Fault

FORMAT opcode

condition codes

N «— 0; ! Condition codes cleared after BPT fault
Z — 0;
\ «— 0;
C «— 0;
exceptions None.
opcodes
03 BPT Breakpoint Faulit

DESCRIPTION To understand the operation of this instruction, refer to Appendix E.
This instruction, together with the T-bit, is used to implement debugging
facilities.

9-73

VAX Instruction Set
HALT

HALT

Halt
FORMAT opcode
condition codes
N «— 0; | If privileged instruction fault,
Z «—— 0; ! condition codes are cleared after
\ «— 0; | the fault. PSL saved on stack
Cc «— 0; | contains condition codes prior to HALT.
N +«— N; | If processor halt
Z — Z;
Vv «— V;
C «— C;
exceptions privileged instruction
opcodes
00 HALT Halt

DESCRIPTION If the process is running in kernel mode, the processor is halted.
Otherwise, a privileged instruction fault occurs. For information about
privileged instruction faults, refer to Appendix E.

Note

This opcode is zero to trap many branches to data.

9-74

VAX Instruction Set
INDEX

INDEX

Compute Index

FORMAT

condition codes

opcode subscript.rl, low.rl, high.rl, size.rl, indexin.rl,

indexout.wl

N +—— indexout LSS 0;
Z «— indexout EQL 0;
\' «— 0;
C «— 0;
exceptions subscript range
opcodes
0A INDEX index
DESCRIPTION The indexin operand is added to the subscript operand and the sum

multiplied by the size operand. The indexout operand is replaced by the
result. If the subscript operand is less than the low operand or greater
than the high operand, a subscript range trap is taken.

Notes

1

No arithmetic exception other than subscript range can result from
this instruction. Therefore, no indication is given if overflow occurs
in either the add or the multiply steps. If overflow occurs on the add
step, the sum is the low-order 32 bits of the true result. If overflow
occurs on the multiply step, the indexout operand is replaced by the
low-order 32 bits of the true product of the sum and the subscript
operand. In the normal use of this instruction, overflow cannot occur
without a subscript range trap occurring.

The index instruction is useful in index calculations for arrays of
the fixed-length data types (integer and floating) and for index
calculations for arrays of bit fields, character strings, and decimal
strings. The indexin operand permits cascading INDEX instructions
for multidimensional arrays. For one-dimensional bit field arrays,

it also permits introduction of the constant portion of an index
calculation that is not readily absorbed by address arithmetic. The
following notes show some of the uses of INDEX.

9-75

VAX Instruction Set
INDEX

3 The following example shows a sequence of COBOL statements and
the VAX MACRO code their compilation might generate:

COBOL:

01 A-ARRAY.
02 A PIC X(10) OCCURS 15 TIMES.

01 B PIC X(10).
MOVE A(I) TO B.

MACRO:
INDEX I, #1, #15, #10, #0, RO
MOVC3 #10, A-10[RO}, B.

4 The following example shows a sequence of PL/I statements and the
VAX MACRO code their compilation might generate:

PL/I:

DCL A(-3:10) BIT (5);
A(I) = 1;

MACRO:

INDEX I, #-3, #10, #5, #3, RO
INSV #1, RO, #5, A ; Assumes A is byte aligned

5 The following example shows a sequence of FORTRAN statements and
the VAX MACRO code their compilation might generate:

FORTRAN:

INTEGER*4 A(L1:Ul, L2:U2), I, J
A(I,J) =1

MACRO:

INDEX J, #L2, #U2, #M1, #0, RO; M1=Ul-L1+1
INDEX I, #L1, #Ul, #1, RO, RO;
MOVL #1, A-a[RO]; a = {{L2*M1} + L1} *4

9-76

VAX Instruction Set
MOVPSL

MOVPSL

Move from PSL
FORMAT opcode dst.wl
condition codes

N — N;

Z — Z:

A — V;

C - C
exceptions None.
opcodes

DC MOVPSL Move from PSL

DESCRIPTION The destination operand is replaced by processor status longword (PSL).

9-77

VAX Instruction Set

NOP

NOP

No Operation

FORMAT

condition codes

exceptions

opcodes

opcode

— Z;

<—-V;

O < N Z

— C;

None.

01 NOP No Operation

DESCRIPTION

9-78

No operation is performed. Because the time delay caused by a NOP
instruction is dependent on processor type, Digital recommends that you
do not use NOP as a means of delaying program execution. When you
must have a program wait for a specified period, you should use a macro,
such as the TIMEDWAIT macro, or code sequence that is not dependent
on the processor’s internal speed.

VAX Instruction Set
POPR

Pop Registers
FORMAT opcode mask.rw
condition codes
N «— N;
4 — Z;
\' — V;
C e C;
exceptions None.
opcodes
BA POPR Pop Registers

DESCRIPTION The contents of registers whose numbers correspond to set bits in the
mask operand are replaced by longwords popped from the stack. R[n] is
replaced if mask<n> is set. The mask is scanned from bit O to bit 14.
Bit 15 is ignored.

9-79

VAX Instruction Set
PUSHR

PUSHR

Push Registers

FORMAT opcode mask.rw
condition codes
N «— N;
Z — Z;
\Y —V;
C «— C;
exceptions None.
opcodes
BB PUSHR Push Registers

DESCRIPTION The contents of registers whose numbers correspond to set bits in the
mask operand are pushed on the stack as longwords. R[n] is pushed if
mask<n> is set. The mask is scanned from bit 14 to bit 0. Bit 15 is
ignored.

Note

The order of pushing is specified so that the contents of higher-numbered
registers are stored at higher memory addresses. An example of a result
of this would be a double-floating datum stored in adjacent registers being
stored by PUSHR in memory in the correct order.

9-80

VAX Instruction Set
XFC

Extended Function Call
FORMAT opcode
condition codes
N «— 0;
Z «— 0;
V «— 0;
C — 0;
exceptions None.
opcodes
FC XFC Extended Function Call

DESCRIPTION To understand the operation of this instruction, refer to Appendix E and
the VAX Architecture Reference Manual. This instruction provides for
customer-defined extensions to the instruction set.

9-81

9.2.7

VAX Instruction Set

XFC

Queue Instructions

9-82

A queue is a circular, doubly linked list. A queue entry is specified by its
address. Each queue entry is linked to the next by a pair of longwords.
The first longword is the forward link; it specifies the location of the
succeeding entry. The second longword is the backward link; it specifies
the location of the preceding entry. Because a queue contains redundant
links, it is possible to create ill-formed queues. The VAX instructions
produce UNPREDICTABLE results when used on ill-formed queues.

A queue is classified by the type of link that it uses. The VAX supports
two distinet types of links: absolute and self-relative.

9.2.7.1

Absolute Queues

Absolute queues use absolute addresses as links. Queue entries are
linked by a pair of longwords. The first (lowest-addressed) longword is the
forward link; it is the address of the succeeding queue entry. The second
(highest-addressed) longword is the backward link; it is the address of the
preceding queue entry.

A queue is specified by a queue header, which is identical to a pair of
queue linkage longwords. The forward link of the header is the address of
the entry called the head of the queue. The backward link of the header
is the address of the entry termed the tail of the queue. The forward link
of the tail points to the header.

Two general operations can be performed on queues: insertion of entries
and removal of entries. Generally, entries can be inserted or removed only
at the head or tail of a queue. (Under certain restrictions they can be
inserted or removed elsewhere; this is discussed later.)

The following text contains examples of queue operations. An empty queue
is specified by its header at address H.

31 0
H H
H :H+4
31 0
ZK-1166A-GE

If an entry at address B is inserted into an empty queue (at either the
head or the tail), the queue appears as follows:

VAX Instruction Set

XFC
31 0
:H
:H+4
31 0
31 0
H B
H :B+4
31 0
ZK-1167A-GE

If an entry at address A is inserted at the head of the queue, the queue
appears as follows:

31 0
A H
B :H+4
31 0
31 0
B tA
H 1A+4
31 0
31 0
H B
A :B+4
31 0
ZK-1168A-GE

9-83

VAX Instruction Set

XFC

9-84

Finally, if an entry at address C is inserted at the tail, the queue appears
as follows:

31 0
A H
C :H+4
31 0
31 0
B tA
H tA+4
31 0
31 0
C B
A :B+4
31 0
31 0
H :C
B :C+4
31 0
ZK-1169A-GE

Following the preceding steps in reverse order gives the effect of removal
at the tail and removal at the head.

If more than one process can perform operations on a queue
simultaneously, insertions and removals should only be done at the head
or tail of the queue. If only one process (or one process at a time) can
perform operations on a queue, insertions and removals can be made at
other than the head or tail of the queue. In the preceding example with
the queue containing entries A, B, and C, the entry at address B can be
removed, giving the following:

VAX Instruction Set

XFC
31 0
A H
Cc :H+4
31 0
31 0
C A
H tA+4
31 0
31 0
H :C
A :C+4
31 0
ZK-1170A-GE

The reason for this restriction is that operations at the head or tail are
always valid because the queue header is always present. Operations
elsewhere in the queue depend on specific entries being present and may
become invalid if another process is simultaneously performing operations
on the queue.

Two instructions are provided for manipulating absolute queues: INSQUE
and REMQUE. INSQUE inserts an entry specified by an entry operand
into the queue following the entry specified by the predecessor operand.
REMQUE removes the entry specified by the entry operand. Queue
entries can be on arbitrary byte boundaries. Both INSQUE and REMQUE
are implemented as noninterruptible instructions.

9.2.7.2 Self-Relative Queues
Self-relative queues use displacements from queue entries as links. Queue
entries are linked by a pair of longwords. The first (lowest addressed)
longword is the forward link; it is the displacement of the succeeding
queue entry from the present entry. The second (highest-addressed)
longword is the backward link; it is the displacement of the preceding
queue entry from the present entry.

A queue is specified by a queue header, which also consists of two longword
links. The forward link of the header is the address of the entry called the
head of the queue. The backward link of the header is the address of the
entry called the tail of the queue. The forward link of the tail points to the
header.

The following text contains examples of queue operations. An empty queue
is specified by its header at address H. Because the queue is empty, the
self-relative links must be zero, as shown.

9-85

VAX Instruction Set

XFC

9-86

31 0
0 :H
:H+4
31 0
ZK-1171A-GE

If an entry at address B is inserted into an empty queue (at either the
head or tail), the queue appears as follows:

31 0
- 'H
-H :H+4
31 0
31 0
H-B B
H-B :B+4
31 0
ZK-1172A-GE

If an entry at address A is inserted at the head of the queue, the queue
appears as follows:

31 0
A-H H
B-H :H+4
31 0
31 0
B-A A
H-A tA+4
31 0
31 0
H-B B
A-B :B+4
31 0
ZK-1173A-GE

Finally, if an entry at address C is inserted at the tail, the queue appears
as follows:

VAX Instruction Set

XFC
31 0
—-H H
C-H tH+4
31 0
31 0
B-A A
H-A tA+4
31 0
31 0
B B
A-B :B+4
31 0
31 0
:C
B-C :C+4
31 0
ZK-1174A-GE

Following the previous steps in reverse order gives the effect of removal at
the tail and at the head.

The following four instructions manipulate self-relative queues:
1 INSQHI—Insert entry into queue at head, interlocked.

2 INSQTI—Insert entry into queue at tail, interlocked.

3 REMQHI—Remove entry from queue at head, interlocked.
4 REMQTI—Remove entry from queue at tail, interlocked.

These operations are interlocked to allow cooperating processes in

a multiprocessor system to access a shared list without additional
synchronization. Queue entries must be quadword aligned. A hardware-
supported interlocked memory access mechanism is used to read the queue
header. Bit 0 of the queue header is used as a secondary interlock; it is
set when the queue is being accessed. If an interlocked queue instruction
encounters the secondary interlock set, it terminates after setting the
condition codes to indicate failure to gain access to the queue. If the
secondary interlock bit is not set, then the interlocked queue instruction
sets it during its operation and clears it at instruction completion. In this
way, other interlocked queue instructions are prevented from operating on
the same queue.

9-87

VAX Instruction Set

XFC

9-88

9.27.3

Instruction Descriptions
The following instructions are described in this section:

Description and Opcode

Number of
Instructions

Insert Entry into Queue at Head, Interlocked
INSQHI entry.ab, header.aq

Insert Entry into Queue at Tail, Interlocked
INSQT! entry.ab, header.aq

Insert Entry in Queue
INSQUE entry.ab, pred.ab

Remove Entry from Queue at Head, Interlocked
REMQHI header.aq, addr.wi

Remove Entry from Queue at Tail, Interlocked
REMQT! header.aq, addr.wl

Remove Entry from Queue
REMQUE entry.ab, addr.wl

1

VAX Instruction Set
INSQHI

INSQHI

Insert Entry into Queue at Head, Interlocked

FORMAT

condition codes

exceptions

opcodes

opcode entry.ab, header.aq

if {insertion succeeded} then
begin
N—0;
Z «— (entry) EQL (entry+4); | First entry in queue
V «— 0;
C«—0;
end;
else
begin
N «—— 0;
Z «— 0;
V —0;
C—1; | Secondary interlock failed
end;

reserved operand

5C INSQH! Insert Entry into Queue at Head, Interlocked

DESCRIPTION

The entry specified by the entry operand is inserted into the queue
following the header. If the entry inserted was the first one in the queue,
the condition code Z-bit is set; otherwise it is cleared. The insertion is

a noninterruptible operation. The insertion is interlocked to prevent
concurrent interlocked insertions or removals at the head or tail of the
same queue by another process even in a multiprocessor environment.
Before performing any part of the operation, the processor validates that
the entire operation can be completed. This method ensures that if a
memory management exception occurs (see Appendix E), the queue is
left in a consistent state. If the instruction fails to acquire the secondary
interlock, the instruction sets condition codes and terminates.

9-89

VAX Instruction Set

INSQHI

9-90

Notes

1

Because the insertion is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

The INSQHI, INSQTI, REMQHI, and REMQTI instructions
are implemented such that cooperating software processes in
a multiprocessor may access a shared list without additional
synchronization.

To set a software interlock realized with a queue, you can use the
following:

INSERT:
INSQHI
BEQL 1$
BCS INSERT
CALL WAIT(...)

Was queue empty?
Yes

Try inserting again
No, wait

Ne Ne Ne N

1$:
During access validation, any access that cannot be completed results

in a memory management exception even though the queue insertion
is not started.

A reserved operand fault occurs if entry or header is an address that
is not quadword aligned (that is, <2:0> NEQU 0) or if header<2:1> is
not zero. A reserved operand fault also occurs if header equals entry.
In this case, the queue is not altered.

VAX Instruction Set
INSQTI

INSQTI

Insert Entry into Queue at Tail, Interlocked

FORMAT

condition codes

exceptions

opcodes

opcode entry.ab, header.aq

if {insertion succeeded} then
begin
N «—— 0;
Z — (entry) EQL (entry+4); | First entry in queue
V0
C—0;
end;
else
begin
N «— 0O;
Z—0;
V «—0;
Ce—1; | Secondary interlock failed
end;

reserved operand

5D INSQTI Insert Entry into Queue at Tail, Interlocked

DESCRIPTION

The entry specified by the entry operand is inserted into the queue
preceding the header. If the entry inserted was the first one in the queue,
the condition code Z-bit is set; otherwise, it is cleared. The insertion

is a noninterruptible operation. The insertion is interlocked to prevent
concurrent interlocked insertions or removals at the head or tail of the
same queue by another process even in a multiprocessor environment.
Before performing any part of the operation, the processor validates that
the entire operation can be completed. This method ensures that if a
memory management exception occurs (see Appendix E), queue is left in a
consistent state. If the instruction fails to acquire the secondary interlock,
the instruction sets condition codes and terminates.

9-91

VAX Instruction Set

INSQTI

9-92

Notes

1

Because the insertion is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

The INSQHI, INSQTI, REMQHI, and REMQTI instructions
are implemented such that cooperating software processes in
a multiprocessor may access a shared list without additional
synchronization.

To set a software interlock realized with a queue, you can use the
following:

INSERT:
INSQHI
BEQL 1$
BCS INSERT
CALL WAIT(...)

Was queue empty?
Yes

Try inserting again
No, wait

Ne o Ne Ne N,

1$:

During access validation, any access that cannot be completed results
in a memory management exception even though the queue insertion
is not started.

A reserved operand fault occurs if entry, header, or (header+4) is
an address that is not quadword aligned (that is, <2:0> NEQU 0) or
if header<2:1> is not zero. A reserved operand fault also occurs if
header equals entry. In this case, the queue is not altered.

VAX Instruction Set
INSQUE

INSQUE

Insert Entry in Queue

FORMAT

condition codes

opcode entry.ab, pred.ab

N «—— (entry) LSS (entry+4);

Z «—— (entry) EQL (entry+4); ! First entry in queue

\ +— 0

C «— (entry) LSSU (entry+4);
exceptions None.
opcodes

OE INSQUE Insert Entry in Queue
DESCRIPTION The entry specified by the entry operand is inserted into the queue

following the entry specified by the predecessor operand. If the entry
inserted was the first one in the queue, the condition code Z-bit is set;
otherwise it is cleared. The insertion is a noninterruptible operation.
Before performing any part of the operation, the processor validates that
the entire operation can be completed. This method ensures that if a
memory management exception occurs (see Appendix E), the queue is left
in a consistent state.

Notes

1 The following three types of insertion can be performed by appropriate
choice of the predecessor operand:

e Insert at head:
INSQUE entry, h ; h is queue head
e Insert at tail:

INSQUE entry,@h+4 ; h is queue head
(Note "@" in this case only)

¢ Insert after arbitrary predecessor:
INSQUE entry,p ; p 1s predecessor

2 Because the insertion is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

9-93

VAX Instruction Set

INSQUE

9-94

The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access a
shared list without additional synchronization, if the insertions and
removals are only at the head or tail of the queue.

To set a software interlock realized with a queue, you can use the
following:

INSQUE ... ; Was queue empty?
BEQL 1s ; Yes
CALL WAIT(...) ; No, wait

1$:

During access validation, any access that cannot be completed results
in a memory management exception, even though the queue insertion
is not started.

VAX Instruction Set

REMQHI
Remove Entry from Queue at Head, Interlocked
FORMAT opcode header.aq, addr.wl
condition codes
if {removal succeeded} then
begin
N «— 0;
Z «—— (header) EQL 0; ! Queue empty after removal
V «— {queue empty before this instruction};
C—0;
end;
else
begin
N «— 0;
Z — 0;
V «— 1; ! Did not remove anything
C «— 1; ! Secondary interlock failed
end;
exceptions reserved operand
opcodes
5E REMQHI Remove Entry from Queue at Head, Interlocked
DESCRIPTION If the secondary interlock is clear, the queue entry following the header

is removed from the queue and the address operand is replaced by the
address of the entry removed. If the queue was empty prior to this
instruction, or if the secondary interlock failed, the condition code V-bit is
set; otherwise it is cleared.

If the interlock succeeded and the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise, it is cleared. The
removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process even
in a multiprocessor environment. The removal is a noninterruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures that if
a memory management exception occurs (see Appendix E), the queue is
left in a consistent state. If the instruction fails to acquire the secondary

9-95

VAX Instruction Set
REMQHI

interlock, the instruction sets condition codes and terminates without
altering the queue.

Notes

1 Because the removal is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

2 The INSQHI, INSQTI, REMQHI, and REMQTI instructions
are implemented so that cooperating software processes in a
multiprocessor may access a shared list without additional

synchronization.
3 To release a software interlock realized with a queue, you can use the
following:
18: REMQHT ; Removed last?
BEQL 28 ; Yes
BCS 18 ; Try removing again

CALL ACTIVATE(...) Activate other waiters

2%:
4 To remove entries until the queue is empty, you can use the following:

1$: REMQHI ... ; Anything removed?
BVS 28 ; No

process removed entry
BR 13 ;

28 BCS 18 ; Try removing again
queue empty

5 During access validation, any access that cannot be completed results
in a memory management exception, even though the queue removal
is not started.

6 A reserved operand fault occurs if header or (header + (header)) is
an address that is not quadword aligned (that is, <2:0> NEQU 0) or if
(header)<2:1> is not zero. A reserved operand fault also occurs if the
header address operand equals the address of the addr operand. In
this case, the queue is not altered.

9-96

VAX Instruction Set

REMQTI
Remove Entry from Queue at Tail, Interlocked
FORMAT opcode header.aq, addr.wl
condition codes
if {removal succeeded} then
begin
N «— 0;
Z «— (header + 4) EQL 0; ! Queue empty after removal
V «— {queue empty before this instruction};
C+«—0;
end;
else
begin
N «— 0;
Z—0;
V « 1; | Did not remove anything
C «— 1;| Secondary interlock failed
end;
exceptions reserved operand
opcodes
5F REMQTI Remove Entry from Queue at Tail, Interlocked
DESCRIPTION If the secondary interlock is clear, the queue entry preceding the header

is removed from the queue and the address operand is replaced by the
address of the entry removed. If the queue was empty prior to this
instruction, or if the secondary interlock failed, the condition code V-bit is
set; otherwise it is cleared.

If the interlock succeeded and the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise it is cleared. The
removal is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, even
in a multiprocessor environment. The removal is a noninterruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures that if
a memory management exception occurs (see Appendix E), the queue is
left in a consistent state. If the instruction fails to acquire the secondary

9-97

VAX Instruction Set

REMQTI

9-98

interlock, the instruction sets condition codes and terminates without
altering the queue.

Notes

1

Because the removal is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

The INSQHI, INSQTI, REMQHI, and REMQTI instructions
are implemented to allow cooperating software processes in a
multiprocessor system to access a shared list without additional
synchronization.

To release a software interlock realized with a queue, you can use the
following:

1s$: REMQTI
BEQL 2%
BCS 1s
CALL ACTIVATE(...)

Removed last?

Yes

Try removing again
Activate other waiters

N Ne Ne N,

2$:
To remove entries until the queue is empty, you can use the following:

1s: REMQTI ... ; Anything removed?
BVS 2$; No

process removed entry
BR 1s ;

2$: BCS 1$; Try removing again
queue empty

During access validation, any access which cannot be completed results
in a memory management exception, even though the queue removal
is not started.

A reserved operand fault occurs if header, (header + 4), or (header
+ (header + 4)+4) is an address that is not quadword aligned (that is,
<2:0> NEQU 0), or if (header)<2:1> is not zero. A reserved operand
fault also occurs if the header address operand equals the address of
the addr operand. In this case, the queue is not altered.

VAX Instruction Set
REMQUE

REMQUE

Remove Entry from Queue

FORMAT

condition codes

opcode entry.ab,addr.wl

N «— (entry) LSS (entry+4);

Y4 «—— (entry) EQL (entry+4); ! Queue empty

\ «—— (entry) EQL (entry+4); ! No entry to remove

C «—— (entry) LSSU (entry+4);
exceptions None.
opcodes

OF REMQUE Remove Entry from Queue
DESCRIPTION The queue entry specified by the entry operand is removed from the queue.

The address operand is replaced by the address of the entry removed. If
there was no entry in the queue to be removed, the condition code V-bit
is set; otherwise it is cleared. If the queue is empty at the end of this
instruction, the condition code Z-bit is set; otherwise it is cleared. The
removal is a noninterruptible operation. Before performing any part of
the operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs
(see Appendix E), the queue is left in a consistent state.

Notes

1 The following three types of removal can be performed by suitable
choice of entry operand:

¢ Remove at head:

REMQUE @h,addr ; h is queue header
¢ Remove at tail:

REMQUE @h+4,addr ; h is queue header
e Remove arbitrary entry:

REMQUE entry,addr

2 Because the removal is noninterruptible, processes running in kernel
mode can share queues with interrupt service routines.

9-99

VAX Instruction Set

REMQUE

9-100

The INSQUE and REMQUE instructions are implemented so that
cooperating software processes in a single processor may access a
shared list without additional synchronization, if the insertions and
removals are only at the head or tail of the queue.

To release a software interlock realized with a queue, you can use the
following:

REMQUE ... ; Queue empty?
BEQL 18 ; Yes
CALL ACTIVATE(...) ; Activate other waiters

1$:

To remove entries until the queue is empty, you can use the following:

1s: REMQUE ... ; Anything removed?
BVS EMPTY ; No
BR 1$

During access validation, any access which cannot be completed results
in a memory management exception, even though the queue removal
is not started.

	ISA_09_0001
	ISA_09_0002
	ISA_09_0003
	ISA_09_0004
	ISA_09_0005
	ISA_09_0006
	ISA_09_0007
	ISA_09_0008
	ISA_09_0009
	ISA_09_0010
	ISA_09_0011
	ISA_09_0012
	ISA_09_0013
	ISA_09_0014
	ISA_09_0015
	ISA_09_0016
	ISA_09_0017
	ISA_09_0018
	ISA_09_0019
	ISA_09_0020
	ISA_09_0021
	ISA_09_0022
	ISA_09_0023
	ISA_09_0024
	ISA_09_0025
	ISA_09_0026
	ISA_09_0027
	ISA_09_0028
	ISA_09_0029
	ISA_09_0030
	ISA_09_0031
	ISA_09_0032
	ISA_09_0033
	ISA_09_0034
	ISA_09_0035
	ISA_09_0036
	ISA_09_0037
	ISA_09_0038
	ISA_09_0039
	ISA_09_0040
	ISA_09_0041
	ISA_09_0042
	ISA_09_0043
	ISA_09_0044
	ISA_09_0045
	ISA_09_0046
	ISA_09_0047
	ISA_09_0048
	ISA_09_0049
	ISA_09_0050
	ISA_09_0051
	ISA_09_0052
	ISA_09_0053
	ISA_09_0054
	ISA_09_0055
	ISA_09_0056
	ISA_09_0057
	ISA_09_0058
	ISA_09_0059
	ISA_09_0060
	ISA_09_0061
	ISA_09_0062
	ISA_09_0063
	ISA_09_0064
	ISA_09_0065
	ISA_09_0066
	ISA_09_0067
	ISA_09_0068
	ISA_09_0069
	ISA_09_0070
	ISA_09_0071
	ISA_09_0072
	ISA_09_0073
	ISA_09_0074
	ISA_09_0075
	ISA_09_0076
	ISA_09_0077
	ISA_09_0078
	ISA_09_0079
	ISA_09_0080
	ISA_09_0081
	ISA_09_0082
	ISA_09_0083
	ISA_09_0084
	ISA_09_0085
	ISA_09_0086
	ISA_09_0087
	ISA_09_0088
	ISA_09_0089
	ISA_09_0090
	ISA_09_0091
	ISA_09_0092
	ISA_09_0093
	ISA_09_0094
	ISA_09_0095
	ISA_09_0096
	ISA_09_0097
	ISA_09_0098
	ISA_09_0099
	ISA_09_0100

