10 VAXVECTOR ARCHITECTURE

This chapter describes an extension to the VAX architecture for
integrated vector processing. Some VAX vector architecture departs
from the traditional VAX scalar architecture, especially in the areas
of UNPREDICTABLE results, vector processor exceptions, and
instruction/memory synchronization.

10.1 Introduction to VAX Vector Architecture

Implementation of the VAX vector architecture is optional. VAX processors
that do implement the vector architecture do so as specified in this
chapter. Operating system software may emulate the vector architecture
on processors that omit this feature.

On VAX processors that omit the vector architecture, vector instructions
result in a reserved-instruction fault.

The vector architecture features include additional instructions, vector
registers, and vector control registers.

All descriptions and examples of vector instructions in this chapter use
the assembler notation form of instructions, as described in Section 10.5.
The number and order of operands for the assembler notation differs
from that defined in the instruction stream format. See Section 10.3 and
Section 10.5 for additional information.

10.2 VAX Vector Architecture Registers

This section identifies and describes the vector, vector control, and internal
processor registers used in processing vector architecture operations.

10.2.1 Vector Registers

There are 16 vector registers, VO to V15. Each vector register contains 64
elements numbered 0 to 63. Each element is 64 bits wide. Figure 10-1
depicts a vector register.

A vector instruction that performs a register-to-register operation is
defined as a vector operate instruction. A vector operate instruction
that reads or writes F_floating data, or integer data for shifts or integer
arithmetic operations, reads bits <31:0> of each source element and
writes bits <31:0> of each destination element. Bits <63:32> of the
destination are UNPREDICTABLE for F_floating, integer arithmetic,
and shift instructions.

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

Figure 10-1 Vector Register

63 0
Element 0 ‘Vn

Element 63

ZK-1445A-GE

Vector logical instructions read bits <31:0> of each source element and
write the result into bits <31:0> of each destination element; bits <63:32>
of the destination element receive bits <63:32> of the corresponding
element of the Vb source operand.

For vector instructions that read longword data from memory into a vector
register (VLDL and VGATHL), bits <63:32> of the destination elements
are UNPREDICTABLE.

If the same vector register is used as both source and destination in a
Gather Memory Data into Vector Register (VGATH) instruction, the result
of the VGATH instruction is UNPREDICTABLE.

For the IOTA vector instruction, bits <63:32> of the destination elements
are UNPREDICTABLE.

10.2.2 Vector Control Registers

The 7-bit Vector Length Register (VLR), shown in Figure 10-2, limits the
highest vector element to be processed by a vector instruction. VLR is
loaded prior to executing the vector instruction using a Move to Vector
Processor (MTVP) instruction. The value in VLR may range from 0 to
64. If the vector length is zero, no vector elements are processed. If a
vector instruction is executed with a vector length greater than 64, the
results are UNPREDICTABLE. Elements beyond the vector length in the
destination vector register are not modified.

10-2

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

Figure 10-2 Vector Length Register (VLR)

31 7 6 0
SBZ/RAZ length

ZK-1446A-GE

The Vector Mask Register (VMR), shown in Figure 10-3, has 64 bits, each
corresponding to an element of a vector register. Bit <0> corresponds

to vector element 0. See Section 10.3.1 for information on masked
operations.

Figure 10-3 Vector Mask Register (VMR)

63 1 0

ZK-1447A-GE

The 7-bit Vector Count Register (VCR), shown in Figure 10—4, receives the
length of the offset vector generated by the IOTA instruction.

Figure 104 Vector Count Register (VCR)

31 7 6 0
SBZ/RAZ count

ZK-1448A-GE

These registers are read and written by Move from/to Vector Processor
(MFVP/MTVP) instructions.

10.2.3 Internal Processor Registers

The vector processor contains the following internal processor registers
(IPRs) that can be accessed by the scalar processor using MTPR/MFPR
instructions:

* Vector Processor Status Register (VPSR)

® Vector Arithmetic Exception Register (VAER)

¢ Vector Memory Activity Check (VMAC)

e Vector Translation Buffer Invalidate All (VTBIA)

10-3

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

® Vector State Address Register (VSAR)

The VPSR is shown in Figure 10-5, and is described in Table 10-1.
Figure 10-5 Vector Processor Status Register (VPSR)

31 30 2524 23 87 6543210
B | AlP[M RIS|R|V
S 0 VIM 0 E[MIF|OJL|{T}IS|E
Y O|P X|F D|S|T|N

ZK-1449A-GE

Table 10-1 Description of the Vector Processor Status Register (VPSR)

Extent

Type

Description

<0>

<1>

<2>

<3>

<4>

<5>

<6>

RW

R/W1C

RW1C

Vector Processor Enabled (VEN). The vector processor is enabled by writing a one to this
bit. Writing a zero disables the vector processor. If VPSR<VENSs is cleared by software
while VPSR<BSY> is set, then once the new state of VPSR becomes synchronized with
subsequent vector instructions, no more instructions are sent and the vector processor
completes execution of all pending instructions in its instruction queue. See Section 10.6.3,
Vector Processor Disabled, for more details.

Vector Processor State Reset (RST). Writing a one to this bit clears VPSR and VAER.
If VPSR<RST> is set by software while VPSR<BSY> is set, the operation of the vector
processor is UNDEFINED. This bit is read as zero (RAZ).

Vector State Store (STS). Writing a one to this bit initiates storing of implementation-specific
vector state information to memory using the address in VSAR for the asynchronous
method of handling memory management exceptions. If the synchronous method is
implemented, write operations to VPSR<STS> are ignored. This bit is RAZ.

Vector State Reload (RLD). Writing a one to this bit initiates reloading of implementation-
specific vector state information from memory using the address in VSAR for the
asynchronous method of handling memory management exceptions. If the synchronous
method is implemented, write operations to VPSR<RLD> are ignored. This bit is RAZ.

0

Memory Fault (MF). This bit is set by the vector processor when there is a memory
reference to be retried due to an asynchronous memory management exception. Writing
a one to VPSR<MF> clears it. Writing a zero to VPSR<MF> has no effect. If the
synchronous method of handling memory management exceptions is implemented, this bit
is always zero.

Pending Memory Fault (PMF). This bit is set by the vector processor when an
asynchronous memory management exception is pending. Writing a one to VPSR<PMF>
clears it. Writing a zero to VPSR<PMF> has no effect. If the synchronous method of
handling memory management exceptions is implemented, this bit is always zero.

10-4

(continued on next page)

Table 10-1 (Cont.)

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

&

Description of the Vector Processor Status Register (VPSR)

Extent

Type

Description

<7>

<23:8>
<24>

<25>

<30:26>
<31>

R/W1C

RW1C

RW1C

Vector Arithmetic Exception (AEX). This bit is set by the vector processor when disabling
itself due to an arithmetic exception. Information regarding the nature of the exception can
be found in VAER. Writing a one to VPSR<AEX> clears VPSR<AEX> and VAER. Writing a
zero to VPSR<AEX> has no effect.

0

Implementation-Specific Hardware Error (IMP). This bit is set by the vector processor
when disabling itself due to an implementation-specific hardware error. Writing a one to
VPSR<IMP> clears it. Writing a zero to VPSR<IMP> has no effect.

An implementation may choose not to implement VPSR<IMP>. In this case, writing
VPSR<IMP> with either value must have no effect and must not generate any error. Also,
its value when read must be zero.

lllegal Vector Opcode (IVO). This bit is set by the vector processor when disabling itself
due to receiving an illegal vector opcode. Writing a one to VPSR<IVO> clears it. Writing a
zero to VPSR<IVO> has no effect.

An implementation may choose not to implement VPSR<IVO>. In this case, writing
VPSR<IVO> with either value must have no effect and must not generate any error. Also,
its value when read must be zero.

0

Vector Processor Busy (BSY). When this bit is set, the vector processor is executing vector
instructions. When it is clear, the vector processor is idle, or the vector processor has
suspended instruction execution due to an asynchronous memory management exception
or hardware error. Writing to VPSR<BSY> has no effect.

Table 10-2 shows the possible settings of VPSR<3:0> in the same MTPR
instruction, and the resulting action for the vector processor. The state
of the vector processor is determined by the encoding of Vector Processor
Enabled (VPSR<VEN>) and Vector Processor Busy (VPSR<BSY>). The
vector processor state for possible encodings is shown in Table 10-3.

Table 10-2 Possible VPSR<3:0> Settings for MTPR
RLD STS RST VEN Meaning

Disable vector processor

Enable vector processor

Reset state and disable vector processor
Reset state and enable vector processor
Store state (must disable vector processor)
Reload state and disable vector processor

Reload state and then enable vector
processor

- - O 0 0o o ©
O o0 - 00 0o ©
OO0 O =+ 2 0o
- 0 0 =+ O = O

10-5

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

10-6

Table 10-3 State of the Vector Processor
VEN BSY Meaning

0 0 The vector processor is not executing any instructions now, and
either has no pending instructions or will not execute pending
instructions. No more instructions should be sent.

0 1 The vector processor is executing at least one pending instruction.
No more instructions should be sent.

1 0 The vector processor is not executing any instructions now, and
either has no pending instructions or will not execute pending
instructions. New instructions can be sent to the vector processor.

1 1 The vector processor is executing at least one instruction now.
New instructions can be sent.

Note that because the vector and scalar processors can execute
asynchronously, a VPSR state transition may not be seen immediately

by the scalar processor. After performing an MTPR to VPSR, software
must then issue an MFPR from VPSR to ensure that the new state of
VPSR (and VAER if cleared by VPSR<RST>) will affect the execution

of subsequently issued vector instructions. The MFPR in this case will
not complete until the new state of the vector processor becomes visible

to the scalar processor. If software does not issue the MFPR, then it is
UNPREDICTABLE whether this synchronization between the new state of
VPSR (and VAER) and subsequently issued vector instructions occurs.

The VAER, shown in Figure 10-6, is a read-only register used to record
information regarding vector arithmetic exceptions. Table 10-4 shows
the encoding for the exception condition types. The destination register
mask field of VAER records which vector registers have received default
results due to arithmetic exceptions. VAER<16+n> corresponds to vector
register Vn, where n is between 0 and 15. For more information, refer to
Section 10.6.2, Vector Arithmetic Exceptions.

Figure 10-6 Vector Arithmetic Exception Register (VAER)

31 16 15 0
vector destination register mask exception condition summary

ZK-1450A-GE

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

Table 10-4 VAER Exception Condition Summary Word Encoding

Bit Exception Condition
<0> Floating underflow

<1> Floating divide by zero
<2> Floating reserved operand
<3> Floating overflow

<4> 0

<5> Integer overflow

<15:6> 0

The Vector Memory Activity Check (VMAC) register, shown in Figure 10-7,
is used to guarantee the completion of all prior vector memory accesses.
For more information on this function of VMAC, refer to section

Section 10.7.2.2. An MFPR from VMAC also ensures that all hardware
errors encountered by previous vector memory instructions are reported
before the MFPR completes. For more information on this function of
VMAGC, refer to Section 10.9, Hardware Errors. The value returned by
MFPR from VMAC is UNPREDICTABLE.

Figure 10-7 Vector Memory Activity Check (VMAC) Register

31 0

ZK-1451A-GE

The Vector Translation Buffer Invalidate All (VI'BIA) register, shown
in Figure 10-8, is a write-only register that may be omitted in some
implementations. If the vector processor contains its own translation
buffer, moving zero into VIBIA using the MTPR instruction invalidates
the entire vector translation buffer. For more information, refer to
Section 10.8, Memory Management.

Figure 10-8 Vector Translation Buffer Invalidate All (VTBIA) Register

31 0

ZK-1451A-GE

10-7

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

10-8

The Vector State Address Register (VSAR), shown in Figure 10-9, is a
read/write register that contains a quadword-aligned virtual address of
memory assigned by software for storing implementation-specific vector
hardware state when the asynchronous method of handling memory
management exceptions is implemented. The length of this memory area
is implementation specific. Software must guarantee that accessing
the memory pointed to by the address does not result in a memory
management exception. If the synchronous method of handling memory
management exceptions is implemented, this register is omitted. For
more information, refer to Section 10.6.1, Vector Memory Management
Exception Handling.

Figure 10-9 Vector State Address Register (VSAR)

31 32 0
Virtual Memory Address SBZ

ZK-1452A-GE

With the exception of VPSR (and VAER), an MTPR to any other writable
vector internal processor register (IPR) ensures that the new state of the
IPR affects the execution of all subsequently issued vector instructions.
Vector instructions issued before an MTPR to any writable vector IPR
are unaffected by the new state of the IPR (and any implicitly changed
vector IPR) except in one case: when the MTPR sets VPSR<RST> while
VPSR<BSY> is set. (See Table 10-1 for more details.)

Except for the following two cases, the operations of the scalar and vector
processors are UNDEFINED after execution of MTPR to a read-only vector
IPR, MTPR to a nonexistent vector IPR, MTPR of a nonzero value to a
MBZ field, or MTPR of a reserved value to a vector IPR. The preferred
implementation is to cause reserved-operand fault.

e If an implementation supports an optional vector processor, but the
vector processor is not installed, MTPR to VPSR has no effect.

¢ If an implementation supports an optional vector processor, but either
the vector processor is not installed, or the scalar/vector processor pair
uses a common translation buffer (TB), MTPR to VIBIA has no effect.

In each of these cases, MTPR is implemented as a no-op.

Except for the following two cases, the operations of the scalar and
vector processors are UNDEFINED after execution of MFPR from a
nonexistent vector IPR, or MFPR from a write-only vector IPR. The
preferred implementation is to cause reserved-operand fault.

¢ If an implementation supports an optional vector processor, but the
vector processor is not installed, MFPR from VPSR returns zero.

¢ If an implementation supports an optional vector processor, but the
vector processor is not installed, MFPR from VMAC has no effect.

VAX VECTOR ARCHITECTURE
10.2 VAX Vector Architecture Registers

The internal processor register (IPR) assignments for these registers are
found in Table 10-5.

Table 10-5 IPR Assignments
Offset (Hex) IPR

90 VPSR

91 VAER

92 VMAC

93 VTBIA

94 VSAR

95-9B Reserved for vector architecture use
9C-9F Reserved for vector implementation use

10.3 Vector Instruction Formats

Vector instructions use 2-byte opcodes and normal VAX operand specifiers.
For more information on VAX operand specifiers, refer to the VAX
Architecture Reference Manual. The vector registers to be used by a vector
instruction are specified by the vector control word operand. The MFVP,
MTVP, and Synchronize Vector Memory Access (VSYNC) instructions do
not use a vector control word operand. The general format of the vector
control word operand is shown in Figure 10-10. Table 10-6 describes

the fields of the vector control word operand (cntrl). The actual format of
the vector control word operand is instruction dependent. (Refer to the
instruction descriptions later in this chapter for more detail.) The vector
control word operand is passed by the VAX scalar processor to the vector
processor.

10-9

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

Figure 10-10 Vector Control Word Operand (cntrl)

S

1514 13 12 11 8 7 4 3 0

E
X|0 Va Vb Ve
C

M
o)
E

nHZ

or
1514 1312 11 8 7 4 3 0
MM

OTIO Va Vb Ve
E|F

ZK-1453A-GE

10-10

Table 10-6

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

Description of the Vector Control Word Operand

Extent

Description

<3:0>

<7:4>

<11:8>

<12>
<13>

<13>

<14>

<15>

Vc. This field selects the vector register to be used as the Vc
operand. For the Vector Floating Compare (VCMP) instruction, it
specifies the compare function.

Vb. This field selects the vector register to be used as the Vb
operand.

Va. This field selects the vector register to be used as the Va
operand. For the Vector Convert (VWCVT) instruction, it specifies the
convert function.

0

Modify Intent (Ml). Used only in Load Memory Data into Vector
Register (VLD) and VGATH instructions. instructions to indicate
that a majority of the memory locations being loaded by the VLD or
VGATH will later be stored into by VST/VSCAT instructions. This bit
is optional to implement. See Section 10.3.3, Modify Intent bit, for
more details.

Exception Enable (EXC). Used only in vector integer and floating-
point instructions to enable integer overflow and floating underflow,
respectively.

Match True/False (MTF). When masked operations have been
enabled (cntrl<MOE> EQL 1), only elements for which the
corresponding VMR bit matches cntri<MTF> are operated on.

See previous description. Cntrl<MTF> is also used by the VMERGE
and IOTA instructions.

Masked Operation Enable (MOE). This bit enables operations under
the control of the Vector Mask Register (VMR) for vector instructions.
When set, masked operations are enabled, and only elements for
which the corresponding VMR bit matches cntri<MTF> are operated
on. If cntrl<MOE> is clear, all elements are operated upon. In either
case, the Vector Length Register (VLR) limits the highest element
operated upon.

The vector control word operand may determine some or all of the

following:

* Enabling of masked operations

¢ Enabling of floating underflow for floating-point instructions and
integer overflow for integer operations

* Which vector registers to use as sources, destinations, or both

* Which type of operation to perform (for the convert and compare
instructions)

10-11

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

10.3.1 Masked Operations

Masked operations are enabled by the use of cntrl<15:14> of the vector
control word operand. Cntrl<15> is the Masked Operation Enable (MOE)
bit, and entrl<14> is the Match True/False (MTF) bit. When cntrl<MOE>
is set, masked operations are enabled. Only elements for which the
corresponding Vector Mask Register (VMR) bit matches cntrl<MTF> are
operated upon. If entrl<MOE> is clear, all elements are operated upon. In
either case, the Vector Length Register (VLR) limits the highest element
operated upon.

Cntrl<MOE> should be zero for VMERGE and IOTA instructions;
otherwise the results are UNPREDICTABLE. Both the Vector Mask
Register (VMR) and the Match True/False bit (cntrl<MTF>) are always
used by these instructions. VMERGE and IOTA operate upon vector
register elements up to the value specified in VLR.

10.3.2 Exception Enable Bit

The vector processor does not use the IV and FU bits in the processor
status longword (PSL) to enable integer overflow and floating underfiow
exception conditions. These exception conditions are enabled or disabled
on a per instruction basis for vector integer and floating-point instructions
by bit <13> in the vector control word operand (cntrl<EXC>). When
centrl<EXCs> is set, floating underflow is enabled for vector floating-point
instructions, and integer overflow is enabled for vector integer instructions.
When cntrl<EXC> is clear, floating underflow and integer overflow are
disabled. Note that for VLD/VGATH instructions bit<13> is used and
labeled differently.

10.3.3 Modify Intent Bit

10-12

The Modify Intent (MI) bit is used by the software to indicate to the vector
processor that a majority of the memory locations being loaded by VLD
/VGATH instructions will later be stored into, and so become modified, by
VST/VSCAT instructions. When informed of software’s intent to modify,
some vector processor implementations can optimize the vector loads and
stores performed on these locations.

The MI bit resides in bit<13> of the vector control word operand
(cntrl<MI>) and is used only in VLD and VGATH instructions. A vector
processor implementation is not required to implement cntrl<MI>.

For vector processors that implement cntrl<MI>, software uses the bit in a
VLD or VGATH instruction in the following way:

¢ By setting cntrl<MI> to zero, software indicates that less than a
majority of the locations loaded by the VLD/VGATH instructions will
later be stored into by VST/VSCAT instructions.

¢ By setting cntrl<MI> to 1, software indicates that a majority of the
locations loaded by the VLD/VGATH instructions will later be stored
into by VST/VSCAT instructions.

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

Vector processors that do not implement cntrl<MI> ignore the setting of
this bit in the control word for VLD and VGATH.

The results of VLD/VGATH and VST/VSCAT are unaffected by the setting
of entrl<MI>. This includes memory management, where access-checking
is done with read intent for VLD/VGATH even if cntrl<MI> is set.
However, incorrectly setting cntrl<MI> can prevent the optimization of
these instructions.

10.3.4 Register Specifier Fields

The Va (entrl<11:8>), Vb (cntrl<7:4>), and Vc (entrl<3:0>) fields of the
vector control word operand are generally used to select vector registers.
Some vector instructions use these fields to encode other instruction-
specific information as shown later in this section.

10.3.5 Vector Control Word Formats

Depending on the instruction, the vector control word can specify up to
two vector registers as sources, and one vector register as a destination.
Other information may be encoded in the vector control word, as shown
in Figure 10-11a to Figure 10-11n. Bits that are shown as “0” should be
zero (SBZ). Execution of vector instructions with illegal, inconsistent, or
unspecified control word fields produces UNPREDICTABLE results.

Figure 10-11a depicts the vector control word for VLDL and VLDQ.
Figure 10-11b depicts the vector control word for VSTL and VSTQ.
Figure 10-11c depicts the vector control word for VGATHL and VGATHQ.
Figure 10-11d depicts the vector control word for VSCATL and VSCATQ.

Figure 10-11e depicts the vector control word for VVADDL/F/D/G,
VVSUBL/F/D/G, VVMULL/F/D/G, and VVDIVF/D/G.

Figure 10-11f depicts the vector control word for VVSLLL, VVSRLL,
VVBISL, VVXORL, and VVBICL. Cntrl<EXC> should always be zero for
these instructions, otherwise the results are UNPREDICTABLE.

Figure 10-11g depicts the vector control word for VVCMPL/F/D/G. The Vc
field (cntrl<3:0>) is used to specify the compare function.

Figure 10-11h depicts the vector control word for VVCVT. The Va field
(entrl <11:8>) is used to specify the convert function.

Figure 10-11i depicts the vector control word for VVMERGE.

Figure 10-11j depicts the vector control word for VSADDL/F/D/G, VSSUBL
/F/D/G, VSMULL/F/D/G, and VSDIVF/D/G.

Figure 10-11k depicts the vector control word for VSSLLL, VSSRLL,
VSBISL, VSXORL, and VSBICL. Cntrl<EXC> should be zero for these
instructions; otherwise, the results are UNPREDICTABLE.

Figure 10-111 depicts the vector control word for VSCMPL/F/D/G. The Vc
field (entrl<3:0>) is used to specify the compare function.

10-13

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

Figure 10-11m depicts the vector control word for VSMERGE.
Figure 10-11n depicts the vector control word for IOTA.

10-14

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

Figure 10-11 Vector Control Word Format

a. Vector Control Word Format for VLDL and VLDQ
1514 13 12 11 87 43 0

MIM[M dst/src
OjTiI}|0O 0 0 vec reg
E|F aum

b. Vector Control Word Format for VSTL and VSTQ
15141312 11 8 7 43 0

MM dst/src
ofT|o0f0 0 0 vec reg
E|F num

¢. Vector Control Word Format for VGATHL and VGATHQ
1514 13 12 11 8 7 4 3 0

MMM src dst/src
o|T|1]O 0 vecreg | vecreg
E|F num num

d. Vector Control Word Format for VSCATL and VSCATQ
151413 12 11 87 4 3 0

MM src jdst/src
o|T|0f|0 0 vecreg | vecreg
EIF num num

e. Vector Control Word Format for VVADDUF/D/G, VVSUBUF/D/G, and VVDIVF/D/G

15141312 11 8 7 4 3 0
M|M|E srcl src2 dst
O|T|X]| 0| vecreg | vecreg | vecreg
E|F|C num num num

{. Vector Control Word Format for VVSLLL, VVSRLL, VVBISL, VVXORL, and VVBICL
1514 1312 11 8 7 4 3 0

MM srci src2 dst
O|T| 0|0} vecreg | vecreg | vecreg
E|F num num num

g. Vector Control Word Format for VVCMPL/F/D/G
15141312 11 8 7 4 3 0

MM srci src2
o|T|O vecreg | vecreg f?_,n,-:g
EfF num num

o

h. Vector Control Word Format for VVCVT
151413 12 11 8 7 4 3 0

MiMI[E ovt src dst
O|T|X|o0 func | vecreg | vecreg
E|F|C num num

(continued on next page)

10-15

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

Figure 1011 (Cont.) Vector Control Word Format

i. Vector Control Word Format for VWMERGE
151413 12 11 8 7 4 3 0

M srcl src2 dst
O|T{ 0|0 vecreg | vecreg | vecreg
F num num num

j- Vector Control Word Format for VSADDL/F/D/G, VSSUBL/F/D/G, VSMULL/F/D/G and VSDIVF/D/G
15141312 11 8 7 4 3 0

M|M|E SIc dst
O|T|X}|O o] vecreg | vecreg
E(F|C num num

k. Vector Control Word Format for VSSLLL, VSSRLL, VSBISL, VSXORL, and VSBICL
15141312 11 8 7 4 3 0

MM src dst
o|T|(O0|0 0 vecreg | vecreg
E}F num num

|. Vector Control Word Format for VSCMPL/F/D/G
1514 13 12 11 8 7 4 3 0

MM src
o|T|0]0 0 vec reg m
E|F num

m. Vector Control Word Format for VSMERGE
1514 1312 11 8 7 4 3 0

M sIc
o|Tjo]o 0 vec reg f‘;mng
F num

n. Vector Control Word Format for IOTA
151413 12 11 87 43 0

M dst
of{T|O0|O o] 0 vec reg
F num

ZK-1454A-GE

10.3.6 Restrictions on Operand Specifier Usage

10-16

Certain restrictions are placed on the addressing mode combinations
usable within a single vector instruction. These combinations involve the
logically inconsistent simultaneous use of a value as both a source operand
(that is, a .rw, .rl, or .rq operand) and an address. Specifically, if within
the same instruction the contents of register Rn is used as both a part of a
source operand and as an address in an addressing mode that modifies Rn
(that is, autodecrement, autoincrement, or autoincrement deferred), the

value of the scalar source operand is UNPREDICTABLE.

Use of short literal mode for the scalar source operand of a vector floating-

point instruction causes UNPREDICTABLE results.

VAX VECTOR ARCHITECTURE
10.3 Vector Instruction Formats

If a Store Vector Register Data into Memory (VST) or Scatter Memory
Data into Vector Register (VSCAT) instruction overwrites anything needed
for calculation of the memory addresses to be written, the result of the
VST or VSCAT is UNPREDICTABLE.

If the same vector register is used as both source and destination in a
Gather Memory Data into Vector Register (VGATH) instruction, the result
of the VGATH is UNPREDICTABLE.

When the addressing mode of the BASE operand used in a VLD, VST,
VGATH, or VSCAT instruction is immediate, the results of the instruction
are UNPREDICTABLE.

10.3.7 VAX Condition Codes

The vector instructions do not affect the condition codes in the processor
status longword (PSL) of the associated scalar processor.

10.3.8 lllegal Vector Opcodes

An illegal vector opcode is defined as a vector opcode to which no vector

processor function is currently assigned. Opcodes that are not identified

in Appendix D as vector opcodes are neither decoded nor executed by the
vector processor.

An implementation is permitted to report an illegal vector opcode in one of
the following ways:

1 Reserved-instruction fault. This is the recommended implementation.

2 Illegal vector opcode. The vector processor disables itself and sets
VPSR<IVO>. The remainder of the vector processor state is left
unmodified.

The way in which a particular illegal vector opcode is reported is
implementation specific.

104 Assembler Notation

The assembler notation uses a format that is different from the operand
specifiers for the vector instructions. The number and order of operands
is not the same as the instruction-stream format. For example, vector-
to-vector addition is denoted by the assembler as “VVADDL V1, V2, V3”
instead of “VVADDL X123”. The assembler always generates immediate
addressing mode (I#constant) for vector control word operands. The
assembler notation for vector instructions uses opcode qualifiers to
select whether vector processor exception conditions are enabled or
disabled, and to select the value of cntrl<MTF> in masked, VMERGE,
and IOTA operations. The appropriate opcode is followed by a slash (/).
The following qualifiers are supported:

¢ The qualifier U enables floating underflow. The qualifier V enables
integer overflow. Both of these qualifiers set cntrl<EXC>. The default
is no vector processor exception conditions are enabled.

10-17

VAX VECTOR ARCHITECTURE
10.4 Assembler Notation

¢ The qualifier 0 denotes masked operation on elements for which the
Vector Mask Register (VMR) bit is 0. The qualifier 1 denotes masked
operation on elements for which the VMR bit is 1. Both qualifiers set
cntrl<MOE>. The default is no masked operations.

e For the VMERGE and IOTA instructions only, the qualifier 0
denotes cntrl<MTF> is 0. The qualifier 1 denotes cntrl<MTF> is 1.
Cntrl<MTF> is 1 by default. Cntrl<MOE> is not set in this case.

¢ For the VLD and VGATH instructions only, the qualifier M indicates
modify intent (cntrl<MI> is 1). The default is no modify intent
(entrl<MI> is 0).

The following examples use several of these qualifiers:

VVADDF/1 vo, vi1, Vv2 ;Operates on elements with mask bit set
VVMULD/O vo, Vi, V2 ;Operates on elements with mask bit clear
VVADDL/V vo, vi, v2 ;Enables exception conditions
(integer overflow here)
VVSUBG/UO0 VO, V1, V2 ;Enables floating underflow and
;Operates on elements with mask bit clear

VLDL/M base, #4,V1 ;Indicates Modify Intent

10.5 Execution Model

10-18

A typical processor consists of a VAX scalar processor and its associated
vector processor, which contains vector registers and vector function units.
The scalar and vector processors may execute asynchronously. The VAX
scalar processor decodes both scalar and vector instructions following the
operand specifier evaluation rules stated in the VAX Architecture Reference
Manual, but executes only the scalar instructions. The scalar processor
passes the information required to execute a vector instruction to the
vector processor. This information may include the vector opcode, scalar
source operands, and vector control words. The vector processor performs
the required operation, such as loading data from memory, storing data to
memory, or manipulating data already loaded into its vector registers.

The scalar processor may decode a vector instruction before checking
whether the vector processor should receive it. Exceptions on vector
instruction operands may occur during this decoding and may be taken
before the attempt to send the decoded instruction to the vector processor.
The scalar processor performs one of the following operations when
sending a decoded vector instruction to the vector processor. Recall that
because the vector and scalar processors can execute asynchronously,

a VPSR state transition may not be seen immediately by the scalar
Processor.

e If the scalar processor views the vector processor as enabled (the scalar
processor sees VPSR<VEN> as set), the decoded vector instruction is
sent to the vector processor. The vector processor queues instructions
sent by the scalar processor until they can be executed.

VAX VECTOR ARCHITECTURE
10.5 Execution Model

¢ If the scalar processor views the vector processor as disabled (the
scalar processor sees VPSR<VEN> as clear), attempting to send the
decoded vector instruction to the vector processor results in a vector
processor disabled fault.

The following flow details how vector instruction decode proceeds from the
scalar processor:

DO WHILE (the scalar processor has a decoded vector instruction for

the vector processor)

IF (the vector processor is viewed as disabled -- the scalar processor

sees VPSR<VEN> as clear) THEN

enter the vector processor disabled fault handler.

ELSE

END

IF (asynchronous memory management handling is implemented
AND VPSR<PMF> is set) THEN
enter the memory management exception handler.
{The vector processor clears VPSR<PMF>.}

ELSE

BEGIN
{If asynchronous memory management handling is
implemented and VPSR<MF> is set, the vector processor
clears VPSR<MF>, and retries the faulting memory
reference before any new vector instructions in the
queue are executed.}
IF (the vector processor instruction queue is not full) THEN
BEGIN

Send the decoded instruction to the vector processor

for execution.

IF (the decoded instruction is a vector memory access
instruction AND synchronous memory management
handling is implemented) THEN

ensure instruction completion without the occurrence
of memory management exceptions.
END
END

If asynchronous memory management handling is implemented, and
VPSR<MF> is set when the scalar processor sends the vector processor
an instruction, the vector processor clears VPSR<MF>, and retries the
faulting memory reference before any new vector instructions in the queue
are executed.

The VAX scalar processor need not wait for the vector processor to
complete its operation before processing other instructions. Thus, the
scalar processor could be processing other VAX instructions while the
vector processor is performing vector operations. However, if the scalar
processor issues an MFVP instruction to the vector processor, the scalar
processor must wait for the MFVP result to be written before processing
other instructions.

Because the scalar and vector processors may execute asynchronously, it is
possible to context switch the scalar processor before the vector processor
is idle. Software is responsible for ensuring that scalar and vector memory
management remains synchronized, and that all exceptions get reported
in the context of the process where they occurred. This is achieved by

10-19

VAX VECTOR ARCHITECTURE
10.5 Execution Model

making sure all vector memory accesses complete, and then disabling the
vector processor before any scalar context switch.

The vector processor may have its own translation buffer (TB) and cache
and may have separate paths to memory, or it may share these resources
with the scalar processor.

10.5.1 Access Mode Restrictions

In general, processes are expected to use the vector processor in only one
mode. However, multimode use of the vector processor by a process is
allowed. Software decides whether to allow vector processor exceptions
from vector instructions executed in a previous access mode to be reported
in the current mode. The preferred method is to report all vector processor
exceptions in the access mode where they occurred. This is achieved by
requiring a process that uses the vector processor to execute a SYNC
instruction before changing to an access mode where additional vector
instructions are executed.

For correct access checking of vector memory references, the vector
processor must know the access mode in effect when a vector memory
access instruction is issued by the scalar processor.

10.5.2 Scalar Context Switching

10-20

With the addition of a vector processor, the required steps in performing
a scalar context switch change. The following procedure outlines the
required method software should use for scalar context switching:

1 Disable the vector processor so that no new vector instructions will be
accepted. Writing zero to the VPSR using the MTPR instruction clears
VPSR<VEN>, and disables the vector processor without affecting
VPSR<31:1>. (See Section 10.6.3, Vector Processor Disabled, for more
details.)

2 Ensure that no more vector memory read or write operations can occur.
Reading the VMAC internal processor register (IPR) using the MFPR
instruction does the required scalar/vector memory synchronization
without any exceptions being reported. Reading VMAC also ensures
that all unreported hardware errors encountered by previous vector
memory instructions are reported before the MFPR completes. For
more information on this function of VMAC, refer to Section 10.9,
Hardware Errors.

3 Set a software scalar-context-switch flag and perform a normal scalar
processor context switch, for example SVPCTX, and so on, leaving the
vector processor state as is.

Although not required by the architecture, software may wait for
VPSR<BSY> to be clear after disabling the vector processor when
performing a scalar context switch, which provides the following
advantages:

* The vector processor can not be executing non-memory-access
instructions from the previous process while a normal scalar context

VAX VECTOR ARCHITECTURE
10.5 Execution Model

switch to a new process is being performed—which may be desirable to
an operating system.

e All unreported hardware errors encountered by previous non-memory-
access instructions will be reported by the time the vector processor
clears VPSR<BSY> and thus known to software before scalar-context
switching continues (refer to Section 10.9, Hardware Errors, for more
details).

e The MFPR from VPSR used to read VPSR<BSY> also ensures that the
scalar processor views the vector processor as disabled.

If software does not wait for VPSR<BSY> to be clear, it is possible that
while a normal scalar context switch to a new process is being performed,
the vector processor may still be executing non-memory-access instructions
from the previous process.

The required steps for Vector Context Switching are discussed in
Section 10.6.4, Handling Disabled Faults and Vector Context Switching.

10.5.3 Overlapped Instruction Execution

To improve performance, the vector processor may overlap the execution
of multiple instructions—that is, execute them concurrently. Further,
when no data dependences are present, the vector processor may complete
instructions out of order relative to the order in which they were issued.
A vector processor implementation can perform overlapped instruction
execution by having separate function units for such operations as
addition, multiplication, and memory access. Both data-dependent

and data-independent instructions can be overlapped; the former by a
technique known as chaining, which is described in the next section. In
many instances, overlapping allows an operation from one instruction to be
performed in any order with respect to an operation of another instruction.

When vector arithmetic exceptions occur during overlapped instruction
execution, exception handling software may not see the same instruction
state and exception information that would be returned from strictly
sequential execution. Most notably, the VAER could indicate the exception
conditions and destination registers of a number of vector instructions
that were executing concurrently and encountered exceptions. Exception
reporting during chained execution is discussed further in Section 10.5.3.1.

To ensure correct program results and exception reporting, the architecture
does place requirements on the ordering among the operations of one
vector instruction and those of another. The primary goal of these
requirements is to ensure that the results obtained from both the
overlapped and strictly sequential execution of data-dependent instructions
are identical. A secondary goal is to establish places within the instruction
stream where software is guaranteed to receive the reporting of exceptions
from a chain of data-dependent instructions.

In many cases, these requirements ensure the obvious: for example,
an output vector register element of one arithmetic instruction must
be computed before it can be used as an input element to a subsequent
instruction. But, a number of the things ensured are not obvious: for

10-21

VAX VECTOR ARCHITECTURE
10.5 Execution Model

10-22

example, a Memory Instruction Synchronization (MSYNC) instruction
must report exceptions encountered in generating a value of Vector
Mask Register (VMR) that is used in a previously issued masked store
instruction.

To precisely define the requirements on the ordering among operations,
Section 10.5.3.3 discusses the “dependence” among their results (the vector
register elements and control register bits produced by the operations).

Vector Chaining

The architecture allows vector chaining, where the results of one vector
instruction are forwarded (chained) to another before the input vector

of the first instruction has been completely processed. In this way, the
execution of data-dependent vector instructions may be overlapped. Thus,
chaining is an implementation-dependent feature that is used to improve
performance.

With some restrictions stated below, the vector processor may chain

a number of instructions. Usually, each instruction is performed

by a separate function unit. The number and types of instructions
allowed within a chained sequence (often referred to as a “chain”) are
implementation dependent. Typically, implementations will attempt to
chain sequences of two or three instructions such as: operate-operate,
operate-store, load-operate, operate-operate-store, and load-operate-store.
Load-operate-operate-store may also be possible.

The following is an example of a sequence that an implementation will
often chain:

VVADDF VO, V1, V2
VVMULF V2, V3, V4

The destination of the VVADDF is a source of the succeeding VVMULF.
The VVMULF begins executing when the first sum element of the
VVADDF is available.

A number of instructions within a chained sequence can encounter
exceptions. For each instruction that encounters an exception, the
vector processor records the exception condition type and destination
register number in the Vector Arithmetic Exception Register (VAER).
When the last instruction within the chain completes, the VAER will
show the exception condition type and destination register number of all
instructions that encountered exceptions within the chain. Furthermore,
when the vector processor disabled fault is finally generated for the
exceptions, the VAER may also indicate exception state for instructions
issued after the last instruction within the chain. This effect is possible
due to the asynchronous exception-reporting nature of the vector processor.

Furthermore, for each instruction that encounters an exception within a
chain, the default result, as defined in Section 10.6.2, is forwarded as the
source operand to the next instruction. This has the effect that default
results and exceptions can propagate down through a chain. Note that the
default result of one instruction may be overwritten by another instruction
before the exception is taken.

VAX VECTOR ARCHITECTURE
10.5 Execution Model

Consider the following:

VVADDG V1, V2, V3 ;gets Floating Overflow
VVGEQG V3, V4 ;gets Floating Reserved Operand
VVMULG V4, V5, V3 ;overwrites V3

For the previous example, assume that an exception is taken after the
completion of the VVWMULG. The VAER will indicate: Floating Overflow
and Floating Reserved Operand exception condition types; and V3 as

a destination register. However, no default result will be found in

the appropriate element of V3 because it has been overwritten by the
VVMULG.

The architecture allows a vector load to be chained into a vector operate
instruction provided the operate instruction can be suspended and
resumed to produce the correct result if the vector load gets a memory
management exception. Consider this example:

VLDL A, #4, VO
VVADDF VO, V1, V1

In synchronous memory management mode, the VVADDF cannot be
chained into the VLDL until the VLDL is ensured to complete without a
memory management exception. This occurs because the scalar processor
is not even allowed to issue the VVADDF to the vector processor until
the memory management checks for the VLDL have been completed. In
asynchronous memory management mode, the VVADDF may be chained
into the VLDL prior to the completion of memory management exception
checking. This is possible because a memory management exception in
asynchronous memory management mode provides sufficient state to
restart both the VLDL and the VVADDF when the memory management
exception is corrected.

The architecture allows a vector operate instruction to be chained into

a store instruction. If the vector operate instruction encounters an
arithmetic exception, the exception condition type and destination register
number are recorded in the Vector Arithmetic Exception Register (VAER).
The default result generated by that instruction (in some cases an encoded
reserved operand) may be written to memory by the store instruction
before the exception is reported.

10.5.3.2 Register Conflict
When overlapping the execution of instructions, the vector processor must
deal with register conflict. This occurs when one instruction is intending
to write a register while previously issued instructions are reading from
that register. The following is an example of vector register conflict:

VVADDF V1, V2, V3
VVMULEF V4, V5, V1

In the example, the VVADDF and VVMULF cannot both begin execution
simultaneously because the elements of V1 generated by the VVMULF
would overwrite the original elements of V1 required as input by the
VVADDF. However, a vector processor implementation can still overlap
the execution of these two instructions in a number of ways. One way
would be by not starting the VVMULF until the first element of V1 has
been read by the VVADDF. In this manner, as the VVADDF reads the

10-23

VAX VECTOR ARCHITECTURE
10.5 Execution Model

10-24

next elements from V1 and V2, the VVMULF writes its product into the
previous element of V1. This process continues until all the elements have
been processed by both instructions. The VVADDF will finish execution
while the VVMULF still has at least one product to store.

In the case of the Vector Mask Register (VMR), the vector processor
ensures that register conflict does not occur. This is often accomplished by
making a copy of the VMR value under which a pending vector instruction
is to execute, and using this copy when execution begins. This allows the
vector processor to begin executing an instruction that writes VMR before
it completes prior instructions that read VMR.

10.5.3.3 Dependences Among Vector Resuits

Note:

In order to achieve correct results and exception reporting during
overlapped execution, the vector processor must maintain certain
dependences among the register elements and control register bits
produced by various vector instructions. Because of the vector processor’s
asynchronous exception reporting nature and out-of-order completion of
instructions, these dependences differ from those ensured by the VAX
scalar processor. In addition, these dependences are at the level of vector
register elements and vector control register bits; rather than at the level
of vector registers and vector control registers.

Among other things, these dependences determine the exception reporting
nature of the MFVP instruction. The value of the vector control register
(VCR, VLR, VMR<31:0>, VMR<63:32>) delivered by an MFVP depends
upon the value of certain vector register elements and vector control
register bits. Unreported exceptions that occur in the production of these
elements and control register bits are reported by the vector processor
prior to the completion of the MFVP from the vector control register.

The dependences are expressed formally for the various classes of vector
instructions by the tables of pseudo-code in this section. These are the
only dependences that software should rely upon the vector processor to
ensure.

A vector processor implementation is allowed to ensure more than just
these dependences providing that this larger set of dependences yields
correct results and exception reporting.

Note the implications of the following sequence for Table 10-7,
Table 10-8, Table 10-9, Table 10-10, Table 10-11, Table 10-12,
Table 10-13, and Table 10-14:

VVSUBF V5, V6, V7
VVADDF V1, V2, V7
VVMULF V7, V7, V3
VVDIVF V1, V4, V7

Implicit in statements of the form: “result DEPENDS on B” is

the requirement that the result depends only on the value of “B”
generated by the most immediate previously issued instruction
relative to the result’s own generating instruction. For instance,
in the following example, the V3 produced by the VVMULF has the
dependence: “V3[i] DEPENDS on V7[i]”. This means that the value

VAX VECTOR ARCHITECTURE
10.5 Execution Model

of V3[i] produced by the VVMULF depends only on the value of
V7[i] produced by the VVADDF.

Table 10-7 Dependences for Vector Operate Instructions

Instructions

Dependence

VVADDx, VSADDx,
VVSUBXx, VSSUBX,
VVMULXx, VSMULX,
VVDIVx, VSDIVx,
VVCVTxy, VVBICL,
VSBICL, VVBISL,
VSBISL, VVXORL,
VSXORL, VVSLLL,
VSSLLL, VVSRLL,
VSSRLL

for 1 = 0 to VLR-1

begin
Vc[i] DEPENDS on VLR;
if {MOE EQL 1} then Vc{i] DEPENDS on VMR<i>;
if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then
begin
Vc[i] DEPENDS on Vbl([i]:;
if {Vector-Vector Operation} AND NOT {VVCVTxy} then
Vc([i] DEPENDS on Valil;
end;
end;

Table 10-8 Dependences for Vector Load and Gather Instructions

Instructions

Dependence

VLDx, VGATHx

for i = 0 to VLR-1

begin
Vc{i] DEPENDS on VLR;
if {MOE EQL 1} then Vc[i] DEPENDS on VMR<i>;

if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL O} then
if VGATH then
begin

Vc[i] DEPENDS on Vb[i];:
k = BASE + Vb[i];
end
else
k = BASE + i * STRIDE;
Vvc([(i] DEPENDS on LOAD_COMPLETED(k);
end;

10-25

VAX VECTOR ARCHITECTURE
10.5 Execution Model

Table 10-9 Dependences for Vector Store and Scatter Instructions

Instructions Dependence

VSTx, VSCATx

j = 0;
for i = 0 to VLR-1
begin
if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then
begin
if {MOE EQL 1} then ELEMENT_STORED[j] depends on VMR<i>;
ELEMENT STORED{j] DEPENDS on Vci{i];
ELEMENT_STORED[j] DEPENDS on VLR;
if VSCAT then
begin
ELEMENT_STORED[j] DEPENDS on Vb[il];
k = BASE + Vb{il;
end
else
k = BASE + i * STRIDE;
STORE_COMPLETED (k) DEPENDS on ELEMENT STORED[]];
Jj o= 3+1;
end;
end;

Table 10-10 Dependences for Vector Compare Instructions

Instructions Dependence

VVCMPx, VSCMPx

for i = 0 to VLR-1

begin

VMR<i> DEPENDS on VLR;

if {MOE EQL 1} then VMR<i> DEPENDS on VMR<i>

if ({MOE EQL 1} AND {VMR<i> EQL MTF}) OR {MOE EQL 0} then
begin
VMR<i> DEPENDS on Vb[i]:
if VVCMP then VMR<i> DEPENDS on Vaf{il;
end;

end;

10-26

VAX VECTOR ARCHITECTURE
10.5 Execution Model

Table 10-11 Dependences for Vector MERGE Instructions

Instructions

Dependence

VVMERGE,
VSMERGE

for i = 0 to VLR-1

begin
Vc[i] DEPENDS on VLR;
Vc[i] DEPENDS on VMR<i>;
if {VMR<i> EQL MTF} then
begin
if VVMERGE then Vc[i] DEPENDS on Vafi]:
end
else
Vc{i] DEPENDS on Vb[i];
end;

Table 10-12 Dependences for IOTA Instruction

Instruction Dependence
IOTA
j=0;
for i = 0 to VLR-1
begin

Vc[j] DEPENDS on VLR;

if {VMR<i> EQL MTF} then
begin
Vc{j] DEPENDS on VMR<O0..1>;
j = j+l;
end;

end;

VCR DEPENDS on VMR<O..VLR-1>;

Table 10-13 Dependences for MFVP Instructions

Instructions Dependence
MSYNC DEPENDS on the following:
+ Al STORE_COMPLETED(x) of previously issued VST and VSCAT instructions
« Al LOAD_COMPLETED(X) of previously issued VLD and VGATH instructions
SYNC DEPENDS on the vector register elements and vector control register bits produced and
stored by all previous vector instructions
MFVMRLO DEPENDS on VMR<0..31>
MFVMRHI DEPENDS on VMR<32..63>
MFVCR DEPENDS on VCR
MFVLR DEPENDS on VLR

10-27

VAX VECTOR ARCHITECTURE
10.5 Execution Model

Table 10-14 Miscellaneous Dependences

ltem Dependence

VSYNC Depends on nothing, but for each memory location, x forces all subsequent LOAD_
COMPLETED(x) and STORE_COMPLETED(x) to DEPEND on all previous LOAD_
COMPLETED(x) and STORE_COMPLETED(x).

MTVP DEPENDS on nothing.

Value of a memory The value of a memory location DEPENDS on nothing and is not DEPENDED on by any
location vector instruction.

Transitive

dependence

if {a DEPENDS on b} AND {b DEPENDS on ¢} then a DEPENDS on ¢

10.6 Vector Processor Exceptions
There are two major classes of vector processor exceptions as follows:
* Vector memory management
— Access control violation

Vector access control violation
Vector alignment
Vector 1/0 space reference

— Translation not valid
— Modify
* Vector Arithmetic
— Floating underflow
— Floating divide by zero
— Floating reserved operand
— Floating overflow
— Integer overflow

Floating underflow and integer overflow can be disabled on a per-
instruction basis by clearing cntrl<EXC>.

Vector processor arithmetic exceptions cause the vector processor to
disable itself (see Section 10.6.3, Vector Processor Disabled). The vector
processor does not disable itself for vector processor memory management
exceptions.

10.6.1 Vector Memory Management Exception Handling

Vector processor memory management exceptions are taken through
the system control block (SCB) vector for their scalar counterparts.
Figure 10-12 illustrates the memory management fault stack frame
that contains the memory management fault parameter.

10-28

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

Figure 10-12 Memory Management Fault Stack Frame (as Sent by the Vector Processor)

31

6543210

v[v|v
Al t[A|M|P|L]:(SP)
s|ofL

Some virtual address in the faulting page

PC at time fault taken

PSL at time fault taken

ZK-1456A-GE

The length (L) bit, the Page Table Entry (PTE) reference (P) bit, and
the modify or write intent (M) bit are defined in the VAX Architecture
Reference Manual. Vector processor memory management exceptions
set these bits in the same way as required for scalar memory
management exceptions.

The vector alignment exception (VAL) bit must be set when an access
control violation has occurred due to a vector element not being
properly aligned in memory.

The vector I/O space reference (VIO) bit is set by some
implementations to indicate that an access control violation has
occurred due to a vector instruction reference to I/O space.

The vector asynchronous memory management exception (VAS) bit
must be set to indicate that a vector processor memory management
exception has occurred when the follwing asynchronous memory
management scheme is implemented.

If more than one kind of memory management exception could occur on a
reference to a single page, then access control violation takes precedence
over both translation not valid and modify. If more than one kind of
access control violation could occur, the precedence of vector access control
violation, vector alignment exception, and vector I/O space reference is
UNPREDICTABLE.

The architecture allows an implementation to choose one of two methods
for dealing with vector processor memory management exceptions. The
two methods are as follows:

Synchronous memory management handling and restart from the
beginning.

Asynchronous memory management handling and store/reload
implementation-specific state using VSAR.

10-29

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

With the synchronous method, no new instructions are processed by the
vector or the scalar processor until the vector memory access instruction
is guaranteed to complete without incurring memory management
exceptions. In such an implementation, the vector memory access
instruction is backed up when a memory management exception occurs
and a normal VAX memory management (access control violation,
translation not valid, modify) fault taken with the program counter
(PC) pointing to the faulting vector memory access instruction. If the
synchronous method is implemented, VSAR is omitted. After fixing the
vector processor memory management exception, software may REI back
to the faulting vector instruction. Alternately, software may context switch
to another process. For further details, see Section 10.6.4.

With the asynchronous method, vector memory management exceptions
set VPSR<PMF> and VPSR<MF>. The vector processor does not inform
the scalar processor of the exception condition; the scalar processor
continues processing instructions. All pending vector instructions that
have started execution are allowed to complete if their source data is valid.
The scalar processor is notified of an exception condition or conditions
when it sends the next vector instruction to the vector processor and a
normal VAX memory management fault is taken. The saved PC points

to this instruction, which is not the vector memory access instruction
that incurred the memory management exception. At this point, the
vector processor clears VPSR<PMF>. After fixing the vector processor
memory management exception, software may allow the current scalar
/vector process to continue. Before vector processor instruction execution
resumes using state that already exists in the vector processor, the vector
processor clears VPSR<MF> and the faulting memory reference is retried.
Alternately, software may context switch to another process. For further
details, see Section 10.6.4.

When a vector processor memory management exception is encountered
by a VLD or VGATH instruction, the contents of the destination vector
register elements are UNPREDICTABLE. When a vector processor
memory management exception is encountered by a VSTL or VSCAT
instruction, it is UNPREDICTABLE whether the vector processor writes
any result location for which an exception did not occur. In either case,
if the fault condition can be eliminated by software and the instruction
restarted, then the vector processor will ensure that all destination
register elements or result locations are written.

10.6.2 Vector Arithmetic Exceptions

Vector operate instructions are always executed to completion, even if a
vector arithmetic exception occurs. If an exception occurs, a default result
is written. The default result is as follows:

* The low-order 32 bits of the true result for integer overflow.

® Zero for floating underflow if exceptions are disabled.

10-30

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

e An encoded reserved operand for floating divide by zero, floating
overflow, reserved operand, and enabled floating underflow. (See
Section 10.13.1.) For vector convert instructions that convert
floating-point data to integer data, where the source element is a
reserved operand, the value written to the destination element is
UNPREDICTABLE.

The exception condition type and destination register number are always
recorded in the Vector Arithmetic Exception Register (VAER) when a
vector arithmetic exception occurs. Refer to Section 10.2.3, Internal
Processor Registers, for more information.

10.6.3 Vector Processor Disabled

As a result of error conditions or software control, the vector processor
signals the scalar processor not to issue any more vector instructions. The
vector processor is disabled when this signal is generated and its state

is reflected in VPSR<VEN>. Because the scalar and vector processors
can execute asynchronously, the scalar processor may not receive this
signal immediately. As a result, the scalar processor may continue to
view the vector processor as enabled and send it vector instructions.
Once the scalar processor receives this signal, it will view the vector
processor as disabled and will not send it any more vector instructions
(including MFVP/MTVP). While the vector processor is disabled, and in
the absence of hardware errors, it will complete all pending instructions in
its instruction queue including those sent by the scalar processor after the
vector processor became disabled.

The vector processor can either disable itself or be disabled by software.
The following error conditions cause the vector processor to disable itself:

e Vector arithmetic exception (flagged by VPSR<AEX>)
e Hardware error (flagged by VPSR<IMP> in some implementations)

e On some implementations, receipt of an illegal vector opcode (flagged
by VPSR<IVO>)

In these cases, the vector processor clears VPSR<VEN> and flags the error
condition by setting the appropriate bit in VPSR. (See Table 10-1.)

Software disables the vector processor by writing a zero into VPSR<VEN>
using an MTPR instruction. Once the vector processor is disabled,

only software can enable it. The software does this by writing a one to
VPSR<VEN> using an MTPR. Recall that after performing an MTPR to
VPSR, software must then issue an MFPR from VPSR to ensure that the
new state of VPSR will affect the execution of subsequently issued vector
instructions. The MFPR will not complete in this case until the new state
of the vector processor becomes visible to the scalar processor.

When the vector processor disables itself due to a hardware error, it is
implementation dependent whether the vector processor completes any
pending vector instruction. However, in this case, the vector processor
ensures when it is reenabled that all incompleted instructions have been
flushed from the instruction queue.

10-31

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

If the scalar processor attempts to issue a vector instruction after it
views the vector processor as disabled, then a vector processor disabled
fault occurs. The vector processor disabled fault uses SCB offset 68
(hex). The exception handling software (running on the scalar processor)
can then read the vector internal processor registers (IPRs) with MFPR
instructions to determine what exception conditions are recorded in the
vector processor and if the vector processor is still busy processing other
unfinished instructions.

Once the scalar processor views the vector processor as disabled, the only
operations that can be issued to the vector processor are MTPR and MFPR
to and from the vector IPRs.

10.6.4 Handling Disabled Faults and Vector Context Switching

10-32

The following flow outlines the required steps for handling a vector
processor disabled fault.

If the new process executing on the scalar processor has a vector
instruction to execute, saving and restoring the state of the vector
processor—that is, vector context switching—is done as part of handling a
subsequent vector processor disabled fault.

If a vector processor disabled fault occurs and the current scalar process is
also the current vector process, then software must perform the following
procedure:

1 Obtain the vector processor status by reading the VPSR using the
MFPR instruction.

2 Perform the following checks to see if any of these conditions caused
the vector processor to be disabled. If any of these conditions exist, a
decision to not continue this flow may occur.

a. If VPSR<IVOs> is set, then write one to clear VPSR<IVO> using
the MTPR instruction, and report an illegal vector opcode error.

b. If VPSR<IMP> is set, then write one to clear VPSR<IMP> using
the MTPR instruction, and report an implementation-specific error.

c. If VPSR<AEX> is set, then write one to clear VPSR<AEX> using
the MTPR instruction, and enter the vector arithmetic exception
handler with information in VAER.

3 If the software scalar-context-switch flag is set, indicating that a scalar
context switch has been done, then perform the following:

a. Make sure the vector processor has access to correct POLR, POBR,
P1LR, and P1BR values.

b. If any vector translation buffer needs to be invalidated, then write
zero into the VIBIA IPR using the MTPR instruction. Vector
translation buffer flushing is required if the process was swapped
out and the mapping change has not yet been made known to the
vector translation buffer.

¢. Clear the software scalar-context-switch flag.

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

4 Enable the vector processor by writing one to VPSR<VEN> using
the MTPR instruction. Ensure the new state of the vector processor
becomes visible to the scalar processor by reading VPSR with the
MFPR instruction.

5 REI to retry the vector instruction at the time of the vector processor
disabled fault. If there is an asynchronous memory management
exception pending, it is taken when that vector instruction is reissued
to the vector processor.

If a vector processor disabled fault occurs and the current scalar process is
not the current vector process, then software must perform the following
procedure:

1 Check if there is a current vector process. If there is one, then perform
the following procedure:

a. Wait for VPSR<BSY> to be clear using the MFPR instruction.

b. Perform the following check to see if this condition caused the
vector processor to be disabled. If this condition exists, a decision
to not continue this flow may occur.

1 If VPSR<IMP> is set, then report an implementation-specific
error.

2 If VPSR<IVO> is set, then set a software IVO flag for this
process. The illegal vector opcode error is handled when this
process next tries to execute in the vector processor.

3 If VPSR<AEX> is set, then set a software AEX flag for this
process, and save vector arithmetic exception state from VAER
using the MFPR instruction. Any vector arithmetic exception
conditions are handled when this process next tries to execute
in the vector processor.

c. At this point there cannot be a synchronous memory management
exception pending. But, if asynchronous memory management
handling is implemented, there may be an asynchronous memory
management exception pending. Because scalar/vector memory
synchronization was required before scalar context switching,
all such pending exceptions are known at this time. So, if
VPSR<PMF> is set, then perform the following procedure:

1 Set a software asynch-memory-exception-pending flag for this
process.

2 Store implementation-specific vector state in memory starting
at the address in VSAR by writing one to VPSR<STS> using
the MTPR instruction.

d. Reset the vector processor state to clear VAER and VPSR, and
enable the vector processor. Writing a one to both VPSR<RST> and
VPSR<VEN> using the same MTPR instruction accomplishes this.
Ensure the new state of the vector processor becomes visible to the
scalar processor by reading VPSR with the MFPR instruction.

e. Store the current vector (VO-V15) and vector control (VLR, VMR,
and VCR) register values using VST and MFVP instructions.

10-33

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

10-34

f. Read the VMAC IPR using the MFPR instruction. This ensures
scalar/vector memory synchronization and that all hardware errors
encountered by previous vector memory instructions have been
reported.

Make the current scalar process also the current vector process.
Clear the software scalar-context-switch flag.

Make sure the vector processor has access to correct POLR, POBR,
P1LR, and P1BR values, and invalidate any vector translation buffer
by writing zero to the VITBIA IPR using the MTPR instruction.

Load the saved vector (V0-V15) and vector control (VLR, VMR, and
VCR) register values using VLD and MTVP instructions.

If the software IMP, IVO, or AEX flags for this process are set, perform
the following procedure:

a. Disable the vector processor by writing zero to VPSR<VEN>
using the MTPR instruction. Ensure the new state of the vector
processor becomes visible to the scalar processor by reading VPSR
with the MFPR instruction.

b. If set, clear the software IMP flag for this process and finish
handling the implementation-specific error. A decision to not
continue this flow may occur.

c. If set, clear the software IVO flag for this process and report an
illegal vector opcode error occurred. A decision to not continue this
flow may occur.

d. If set, clear the software AEX flag for this process and enter the
vector arithmetic exception handler with saved VAER state. A
decision to not continue this flow may occur.

If the software async-memory-exception-pending flag for this process is
set, perform the following procedure:

a. Clear the software async-memory-exception-pending flag for this
process.

b. Send the vector processor the memory address that points to
implementation-specific vector state for this process by writing
VSAR using the MTPR instruction.

¢. Reload the implementation-specific vector state for this process
and leave the vector processor enabled by writing one to both
VPSR<RLD> and VPSR<VEN> using the same MTPR instruction.
From this state, the vector processor determines if VPSR<PMF>,
VPSR<MF>, or both need to be set, and does it. Ensure the new
state of the vector processor becomes visible to the scalar processor
by reading VPSR with the MFPR instruction.

REI to retry the vector instruction at the time of the vector processor
disabled fault. If there is an asynchronous memory management
exception pending, it is taken when that vector instruction is reissued
to the vector processor.

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

10.6.5 MFVP Exception Reporting Examples

VVMULF
VVADDF
MTVLR
VSTL
VVCVTED
MSYNC

VVADDF
VLDL
MSYNC

VVADDF
VLDL
MSYNC

VVMULFE
VVGTRF
VSTL/1
MSYNC

This section gives examples of Move from Vector Processor (MFVP)
exception reporting that are ensured by the vector processor. The rules
used to determine the correct result for each example are found in: the
tables of dependences found in Section 10.5.3.3, the description of MSYNC
in Section 10.7.2, and the description of MFVP in Section 10.15.

Examples of Exceptions That Cause MSYNC to Fault

The following examples illustrate which exceptions are ensured by the
vector processor to always cause MSYNC to fault:

vi, vi, v2
v3, v2, V3
#1
v2, A, #4
v2, V3
RO

The MSYNC faults if exceptions occur in the production of V2[0] by the
VVMULF or in the storage of V2[0] by the VSTL. MSYNC need not fault
if exceptions occur in the production of: V2[1..VLR-1] by the VVMULF,
V3[0..VLR-1] by the VVADDF, or V3[0..VLR-1] by the VVCVTFD.

v1i, vi, VO
A, #4, VO
RO

The MSYNC faults if exceptions occur in the loading of VO[0..VLR-1] from
memory. MSYNC need not fault if exceptions occur in the production of
V0[0..VLR-1] by the VVADDF.

vi, vi, v2
A, #4, V1
RO

The MSYNC faults if exceptions occur in the loading of V1 [0..VLR-1] from
memory. MSYNC need not fault if exceptions occur in the production of
V2[0..VLR-1] by the VVADDF.

Vi, Vvi, V2
v2, V3

V0, A, #4
RO

The MSYNC faults if exceptions occur: in the production of V2{0..VLR-1]
by the VVMULF, in the production of VMR<0..VLR-1> by the VVGTREF, or
in the storage by the VSTL/1 of elements of VO for which the corresponding
VMR bit is one.

Examples of Exceptions the Processor Reports Prior to MFVP
Completion

The following examples illustrate which exceptions the vector processor
will report prior to the completion of an MFVP from a vector control
register:

10-35

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

VLDL
VVMULF
MTVLR
VVGTRF
MEFVMRHI
MFVMRLO

VVGTRF
MTVMRLO
MEFVMRLO

VVMULF/1
MTVMRLO
MF'VMRLO

MTVLR
VVMULF
VVGTRF
MTVLR
I0TA
MEFVCR

10-36

A, #4, V1
vi, vi, v2
#1
vz, V3
R1
R2

Unreported exceptions that occur: in the loading of V1[0] from memory by
the VLDL, in the production of V2[0] by the VVMULF, and VMR<0> by
the VVGTRF are reported by the vector processor prior to the completion
of the MFVMRLO. The vector processor need not at that time report

any exceptions that occur in the loading of V1[1..63] from memory by

the VLDL or in the production of V2[1..63] by the VVMULF. Note that
the vector processor need not report any exceptions before completing
MFVMRHI.

vo, V1
#patt
R1

For any value of “i” in the range of 0 to 31 inclusive: the value of VMR<i>
delivered by MFVMRLO only depends on the value placed into VMR<i>
by the MTVMRLO. As a result, the vector processor need not report
exceptions that occur in the production of VMR by the VVGTRF prior to
completing the MFVMRLO.

vi, vi, v2
#patt
R1

For any value of “i” in the range of 0 to 31 inclusive: the value of VMR<i>
delivered by MFVMRLO only depends on the value placed into VMR<i>
by the MTVMRLO. As a result, the vector processor need not report
exceptions that occur in the production of V2[0..VLR-1] by the VVMULF/1
prior to completing the MFVMRLO.

#64

vo, vO0, V2
vo, V2

#32

#str, V4
R1

Prior to the completion of the MFVCR, the vector processor must report
any exceptions that occurred in the production of V2[0..31] by the
VVMULF and VMR<0..31> by the VVGTRF. Note that VCR produced
by an IOTA depends only on VMR<0..VLR-1>. Recall that no exceptions
can occur in the production of V4[0..VCR-1] by IOTA.

10.7

10.7.1

VAX VECTOR ARCHITECTURE
10.6 Vector Processor Exceptions

MTVLR #64
VLDL A, #4, V2
VVGTRE vo, V1
VSGTRF/1 #3.0, V2
MFVMRLO R1
For any value of “” in the range of 0 to 31 inclusive: prior to the
completion of the MFVMRLO, the vector processor must report any
exceptions that occurred: in the loading of V2[i] from memory for
which VO[i] is greater than V1[i], in the production of VMR<0..31> by
the VVGTREF, and in the production of VMR<0..31> by the VSGTRF/1.
g VVMULF vi, vi, vl
VSTL V1, base, #str
MTVMRLO base
MFVMRLO R1
In this example, the value of VMR<31:0> delivered by MFVMRLO
only depends on the value placed into VMR<31:0> by the MTVMRLO
— whether this value is V1[0] or the previous value of the location is
UNPREDICTABLE. As a result, the vector processor need not report
exceptions that occur in the production of V1 by the VVMULF or in the
storage of V1 by the VSTL.
Synchronization

For most cases, it is desirable for the vector processor to operate
concurrently with the scalar processor so as to achieve good performance.
However, there are cases where the operation of the vector and scalar
processors must be synchronized to ensure correct program results. Rather
than forcing the vector processor to detect and automatically provide
synchronization in these cases, the architecture provides software with
special instructions to accomplish the synchronization. These instructions
synchronize the following:

o Exception reporting between the vector and scalar processors
e Memory accesses between the scalar and vector processors

e Memory accesses between multiple load/store units of the vector
processor

Software must determine when to use these synchronization instructions
to ensure correct results.

The following sections describe the synchronization instructions.

Scalar/Vector Instruction Synchronization (SYNC)

A mechanism for scalar/vector instruction synchronization between the
scalar and vector processors is provided by SYNC, which is implemented
by the MFVP instruction. SYNC allows software to ensure that the
exceptions of previously issued vector instructions are reported before the
scalar processor proceeds with the next instruction. SYNC detects both
arithmetic exceptions and asynchronous memory management exceptions

10-37

VAX VECTOR ARCHITECTURE
10.7 Synchronization

and reports these exceptions by taking the appropriate VAX instruction
fault. Once it issues the SYNC, the scalar processor executes no further
instructions until the SYNC completes or faults.

In beginning the execution of SYNC, the vector processor determines if
any previously issued vector instruction has encountered exceptions which
have yet to be reported to the scalar processor. If so, the SYNC is faulted;
otherwise, the vector processor waits for either of the following conditions
to be true:

* A pending or currently executing vector instruction encounters an
exception—in which case the SYNC faults

* The vector processor determines that all pending and currently
executing vector instructions (including memory instructions in
asynchronous memory management mode) will execute to completion
without encountering vector exceptions. In that case the SYNC
completes.

When SYNC completes, a longword value (which is UNPREDICTABLE)
is returned to the scalar processor. The scalar processor writes the
longword value to the scalar destination of the MFVP and then proceeds
to execute the next instruction. If the scalar destination is in memory, it
is UNPREDICTABLE whether the new value of the destination becomes
visible to the vector processor until scalar/vector memory synchronization
is performed.

When SYNC faults, it is not completed by the vector processor and the
scalar processor does not write a longword value to the scalar destination
of the MFVP. Also, depending on the exception condition encountered, the
SYNC itself takes either a vector processor disabled fault or memory
management fault. If both faults are encountered while the vector
processor is performing SYNC, then the SYNC itself takes a vector
processor disabled fault. Note that it is UNPREDICTABLE whether the
vector processor is idle when the fault is generated. After the appropriate
fault has been serviced, the SYNC may be returned to through an REI

SYNC only affects the scalar/vector processor pair that executed it. It has
no effect on other processors in a multiprocessor system.

10.7.2 Scalar/Vector Memory Synchronization

10-38

Scalar/vector memory synchronization allows software to ensure that

the memory activity of the scalar/vector processor pair has ceased and
the resultant memory write operations have been made visible to each
processor in the pair before the pair’s scalar processor proceeds with the
next instruction. Two ways are provided to ensure scalar/vector memory
synchronization: using MSYNC, which is implemented by the MFVP
instruction, and using the MFPR instruction to read the VMAC (Vector
Memory Activity Check) internal processor register (IPR). Section 10.7.2.1
discusses MSYNC in detail. Section 10.7.2.2 discusses VMAC in detail.

VAX VECTOR ARCHITECTURE
10.7 Synchronization

Scalar/vector memory synchronization does not mean that previously
issued vector memory instructions have completed; it only means that
the vector and scalar processors are no longer performing memory
operations. While both VMAC and MSYNC provide scalar/vector memory
synchronization, MSYNC performs significantly more than just that
function. In addition, VMAC and MSYNC differ in their exception
behavior.

Note that scalar/vector memory synchronization only affects the
scalar/vector processor pair that executed it. It has no effect on

other processors in a multiprocessor system. Scalar/vector memory
synchronization does not ensure that the write operations made by one
scalar/vector pair are visible to any other scalar or vector processor.
Software can make data visible and shared between a scalar/vector pair
and other scalar and vector processors by using the mechanisms described
in the VAX Architecture Reference Manual. Software must first make a
memory write operation by the vector processor visible to its associated
scalar processor through scalar/vector memory synchronization before
making the write operation visible to other processors. Without performing
this scalar/vector memory synchronization, it is UNPREDICTABLE
whether the vector memory write will be made visible to other processors
even by the mechanisms described in the VAX Architecture Reference
Manual.

Lastly, waiting for VPSR<BSY> to be clear does not guarantee that a
vector write operation is visible to the scalar processor.

10.7.2.1 Memory Instruction Synchronization (MSYNC)
While MSYNC performs scalar/vector memory synchronization, it does
more than that. MSYNC allows software to ensure that all previously
issued memory instructions of the scalar/vector processor pair are complete
and their results made visible before the scalar processor proceeds with
the next instruction.

MSYNC is implemented through the nonprivileged MFVP instruction.
Arithmetic and asynchronous memory management exceptions
encountered by previous vector instructions can cause MSYNC to fault.

Once it issues MSYNC, the scalar processor executes no further
instructions until MSYNC completes or faults.

MSYNC completes when the following events occur:

e All previously issued scalar and vector memory instructions have
completed.

e All resultant memory write operations (scalar write operations and
vector store operations) have been made visible to both the scalar and
vector processor.

e No exception that should cause MSYNC to fault has occurred. (See the
next paragraph.)

10-39

VAX VECTOR ARCHITECTURE
10.7 Synchronization

1040

MSYNC faults when any unreported exception has occurred in the
production or storage of any result (vector register element or vector
control register bit) that MSYNC depends upon. Such results include all
elements loaded or stored by a previously issued vector memory instruction
as well as any element or control register bit that these elements depend
upon.

It is UNPREDICTABLE whether MSYNC faults due to exceptions that
occur in the production and storage of results (vector register elements
and vector control register bits) that MSYNC does not depend upon.
Software should not rely on such exceptions being reported by MSYNC for
program correctness.

When MSYNC completes, a longword value (which is UNPREDICTABLE)
is returned to the scalar processor, which writes it to the scalar destination
of the MFVP. The scalar processor then proceeds to execute the next
instruction. If the scalar destination is in memory, it is UNPREDICTABLE
whether the new value of the destination becomes visible to the vector
processor until another scalar/vector memory synchronization instruction
is performed.

When MSYNC faults, it is not ensured that all previously issued scalar
and vector memory instructions have finished. In this case, the scalar
processor writes no longword value to the scalar destination of the MFVP.
Depending on the exception encountered by the vector processor, the
MSYNC takes a vector processor disabled fault or memory management
fault. Note that it is UNPREDICTABLE whether the vector processor is
idle when the fault is generated. After the fault has been serviced, the
MSYNC may be returned to through an REI.

Section 10.5.3.3 gives the necessary rules and examples to determine what
vector control register elements and vector control register bits MSYNC
depends upon.

10.7.2.2 Memory Activity Completion Synchronization (VMAC)

Privileged software needs a way to ensure scalar/vector memory
synchronization that will not result in any exceptions being reported.
Reading the VMAC internal processor register (IPR) with the privileged
MFPR instruction is provided for these situations. It is especially useful
for context switching.

Once a MFPR from VMAC is issued by the scalar processor, the scalar
processor executes no further instructions until VMAC completes, which it
does when the following events occur:

¢ All vector and scalar memory activities have ceased.

* All resultant memory write operations have been made visible to both
the scalar and vector processor.

* A longword value (which is UNPREDICTABLE) is returned to the
scalar processor.

VAX VECTOR ARCHITECTURE
10.7 Synchronization

After writing the longword value to the scalar destination of the MFPR,
the scalar processor then proceeds to execute the next instruction. If the
scalar destination is in memory, it is UNPREDICTABLE whether the
new value of the destination becomes visible to the vector processor until
another scalar/vector memory synchronization operation is performed.

As stated in Section 10.7.2, Scalar/Vector Memory Synchronization,

the ceasing of vector and scalar memory activities does not mean that
previously issued vector memory instructions have completed. For
example, consider a vector memory instruction that has suspended
execution due to an asynchronous memory management exception or
hardware error. Once it becomes suspended, the instruction will write
no further elements and its memory activity will cease. As a result, a
subsequently issued VMAC will complete as soon as those write operations
that were made by the memory instruction before it was suspended are
visible to both the scalar and vector processor. But, after the completion
of the VMAC, the memory instruction is not completed and remains
suspended.

Vector arithmetic and memory management exceptions of previous vector
instructions never fault an MFPR-from-VMAC and never suspend its
execution.

10.7.3 Other Synchronization Between the Scalar and Vector Processors

Synchronization between the scalar and vector processors also occurs in
the following situations:

e In the absence of pending vector arithmetic exceptions, reading a
vector control register using the MFVP instruction waits for all
previous write operations to that register to complete. In addition,
the scalar processor must wait for the MFVP result to be written
before processing other instructions. An MFVP instruction that reads
a vector control register must fault if there is any unreported exception
that has occurred in the production of the value of the control register.

e Writing to VI'BIA or VSAR with MTPR causes the new state of the
changed vector IPR to affect the execution of all subsequently issued
vector instructions.

¢ Reading from VPSR with MFPR after writing to VPSR with MTPR
causes the new state of VPSR (and VAER if cleared by VPSR<RST>) to
affect the execution of subsequently issued vector instructions.

10.7.4 Memory Synchronization Within the Vector Processor (VSYNC)

The vector processor may concurrently execute a number of vector memory
instructions through the use of multiple load/store paths to memory. When
it is necessary to synchronize the accesses of multiple vector memory
instructions the MSYNC instruction can be used; however, there are cases
for which this instruction does more than is needed. If it is known that
only synchronization between the memory accesses of vector instructions
is required, the VSYNC instruction is more efficient.

10-41

VAX VECTOR ARCHITECTURE
10.7 Synchronization

VSYNC orders the conflicting memory accesses of vector-memory
instructions issued after VSYNC with those of vector-memory instructions
issued before VSYNC. Specifically, VSYNC forces the access of a memory
location by any subsequent vector-memory instruction to wait for (depend
upon) the completion of all prior conflicting accesses of that location by
previous vector-memory instructions.

VSYNC does not have any synchronizing effect between scalar and vector
memory access instructions. VSYNC also has no synchronizing effect
between vector load instructions because multiple load accesses cannot
conflict. It also does not ensure that previous vector memory management
exceptions are reported to the scalar processor.

10.7.5 Required Use of Memory Synchronization Instructions

1042

Table 10-15 shows for all possible pairs of vector or scalar read and write
operations to a common memory location, whether one of the scalar/vector
memory synchronization instructions or the VSYNC instruction must be
issued after the first reference and before the second. Since the MSYNC
instruction also includes the VSYNC function, it can always be used
instead of VSYNC.

In general, these rules apply to any sequence of instructions that access
a common memory location, no matter how many other vector or scalar
instructions are issued between the first instruction that accesses the
common location and the second instruction that accesses the same
location. For example, the following code sequence depicts a vector
load followed by a scalar write operation to the same memory location.
Between these two instructions are other scalar/vector instructions that
do not access the common memory location. A scalar/vector memory
synchronization instruction (MSYNC or VMAC) must be executed
sometime after the vector read operation and before the scalar write
operation to the common location. (Here MSYNC is shown.)

VLDL A, #4, VO

other scalar/vector instructions
that do not access A

MSYNC Dst
MOVL RO, A

In most cases, MSYNC is the preferred method for ensuring scalar/vector
memory synchronization. However, there are special cases, usually
encountered by an operating system, when VMAC is more appropriate.

Cases when scalar/vector memory synchronization is required are as
follows:

* After a vector instruction that stores to memory and before a
peripheral (I/O) data transfer of the stored location is initiated by
an application program. This ensures that the value stored will be
transferred to the output device. The application must ensure that
this requirement is met by using MSYNC. Using VMAC in this case is
not sufficient because unlike MSYNC, VMAC does not ensure that all
previous vector memory instructions have successfully completed.

VAX VECTOR ARCHITECTURE
10.7 Synchronization

e After a vector instruction that stores to memory and before the
associated scalar processor can execute a HALT instruction. This
ensures that a read operation or modify operation by another processor
will access the updated memory value. VMAC is the preferred method
for this case.

e Before the vector processor state is saved as a result of power failure.
A read or modify operation of the same memory must read the updated
value (provided that the duration of the power failure does not exceed
the maximum nonvolatile period of the main memory). Also, software
is responsible for saving any pending vector processor exception status.
VMAC is the preferred method for this case.

e Before a context switch. Software is responsible for ensuring that
the vector processor has completed all its memory accesses before
performing a context switch. Software is also responsible for saving
any pending vector processor exception status. VMAC is the preferred
method for this case.

The scalar/vector memory synchronization instructions are the only ones
that guarantee that the memory operations of the vector and scalar
processors are synchronized. Write operations to I/O space, changes in
access mode, machine checks, interprocessor interrupts, execution of a
HALT, REI, or interlocked instruction do not make the results of vector
instructions that write to memory visible to the scalar processor, /'O
subsystem, or other processors. Execution of a scalar/vector memory
synchronization instruction must precede any of these mechanisms to
ensure synchronization of all system components.

10-43

VAX VECTOR ARCHITECTURE
10.7 Synchronization

Table 10-15 Possible Pairs of Read and Write Operations When Scalar/Vector Memory
Synchronization (M) or VSYNC (V) Is Required Between Instructions That
Reference the Same Memory Location

First Reference Scalar Scalar Vector Vector
Second Reference Scalar Vector Scalar Vector

Operation Sequence

Read, Read No':2 No' No' No'
Read, Write No? No® M Ve
Write, Read No? M4 M v
Write, Write No? m* M v

Scalar/vector memory synchronization or VSYNC is never required between two read accesses to a memory location.

2Scalar/vector memory synchronization is never required between two accesses by the VAX scalar processor to a memory
location.

3The scalar read is synchronous and will have completed before a vector memory operation is issued.

4Although a scalar write operation is a synchronous instruction, scalar/vector memory synchronization is required to ensure that
the written data is visible to the vector processor before the vector memory reference is executed.

5See Section 10.7.5.1 for the conditions when VSYNC is not required between a vector memory read/write pair.

10.7.5.1 When VSYNC Is Not Required
There exist conditions when VSYNC is not required between conflicting
vector memory accesses. A VSYNC is not required before a vector memory
store instruction (VST/VSCAT) if, for each memory location to be accessed
by the store, both of the following conditions are met:

* Each of the store’s accesses to the location does not conflict with any
access to the location by previously issued vector store instructions.
Conflict is avoided in this case because one of the following events
occurred:

— The location is not shared.

— All accesses to the location by previous store instructions were
forced to complete by the issue of an MSYNC or VMAC.

* FEach of the store’s accesses to the location does not conflict with
any access to the location by previously issued vector load (VLD
/VGATH) instructions. Conflict is avoided in this case because one of
the following events occurred:

— The location is not shared.

— All accesses to the location by previous load instructions were
forced to complete by the issue of an MSYNC or VMAC.

— Each of the store’s accesses to the location depends on the
completion (as seen by the vector processor) of all accesses to
the location by previous LOAD instructions. (The examples
immediately following demonstrate this concept.)

In all other cases of conflicting vector memory accesses, VSYNC is
necessary to ensure correct results.

10-44

VAX VECTOR ARCHITECTURE
10.7 Synchronization

Examples Where VSYNC Is Not Required

In the following examples, VSYNC is not required because both of the
previous conditions have been met for each location accessed by the store
instruction:

VLDL A, #4, VO
VSTL vo, A, #4
VLDL A, #4, VO
VSSUBL RO, VO, V1
VSTL V1, A, #4
VLDL/0 A, #4 ,V0
VSMULL/0 #3, V0, VO
VLDL/1 A, #4 ,V1
VVMULL/1 vi, V1, Vi
VVMERGE/1 V1, VO, V2
VSTL V2, A, #4
VLDL A, #4 ,VO0
VSGTRF #0, VO
VLDL/1 B, #4, V1
VLDL/0 c, #4, V2
VVMERGE/0 V2, V1, V3
VSTL V3, A, #4
Examples Where VSYNC Is Required
In the following examples, VSYNC is required before the vector memory
store instruction:
VIDL/1 A, #4,V0
VSLSSL #0,V1
VSYNC
VSTL/1 V1,A, #4

If the VSYNC is not included, VO could contain incorrect data at the end
of the sequence since the vector processor is allowed to begin the VSTL
before the VLDL is finished. This occurs because there is no dependence
between the VMR value used by the VLDL and the VSTL.

10-45

VAX VECTOR ARCHITECTURE
10.7 Synchronization

VLDL A, #4, VO
VVMERGE/Q VO, V1, V1
VSYNC
VSTL V1, A, #4
Unless the programmer can ensure that the VMR mask being used by the
VVMERGE will force the access of each location by the VSTL to depend
on the access to that location by the VLDL, a VSYNC is required. Note
that in general, when masked operations provide a conditional path of
dependence between conflicting memory accesses, a VSYNC is usually
necessary to ensure correct results.
VSTL V1, B, #4
MTVLR $32
VSYNC
VLDL A+128, #4, V2
In this example, the VSTL writes locations A to A+255 and the VLDL
reads locations A+128 to A+255. Without the VSYNC, the vector processor
is allowed to start reading locations A+128 to A+255 for the VLDL before
the vector processor completes (or even starts) writing locations A+128 to
A+255 for the VSTL. Consequently, V2[0:31] will not contain V1[32:63],
which is the intended result. Note that the rules on when VSYNC is
not required (found in Section 10.7.5.1) only apply to waiving the use of
VSYNC prior to VST/VSCAT instructions.
VGATHL A, V2, VO ; let at least two elements
; of V2 be equal
VVMULL v9, v0, V1
VSYNC
VSCATL V1, A, V2
The VSYNC is needed in this example because the VSCATL may store
elements of V1 into a common location before the VGATHL has finished
loading that location into all the appropriate elements of V0. As a result,
elements of VO fetched from the same location may be unequal. Suppose in
the example that V2[0] = V2[63] = 0 and that the original value of location
A before the sequence starts is X. Then it is possible without the VSYNC
that VO[63] = X*V9[0] and that (A)= V1[63] = V9[63]*VI[0]*X after the
sequence completes.
VLDL A, #0, VO
VVMULL v9, V0, Vi
VSYNC
VSTL V1, A, #0

1046

The VSYNC is needed in this example because the VSTL may store
elements of V1 into A before the VLDL has finished loading all elements of
VO from A. As a result, the elements of VO may be unequal and so produce
incorrect results.

VAX VECTOR ARCHITECTURE
10.8 Memory Management

10.8 Memory Management

The vector processor may include its own translation buffer and maintain
its own copies of SBR, SLR, SPTEP, POBR, POLR, P1BR, and P1LR as

a group, or may use the scalar processor’s memory management unit.
Hardware implementations must ensure that MTPR to these registers
update the copy retained by the vector processor. Changes to POBR, POLR,
P1BR, and P1LR due to a LDPCTX do not update the copies in the vector
processor. Before software enables the vector processor again, explicit
MTPRs to POBR, POLR, P1BR, and P1LR are required to guarantee
correct operation.

An MTPR to TBIS must also invalidate the corresponding TB entry in the
vector processor, and an MTPR to TBIA must also invalidate the entire
TB in the vector processor. However, the vector TB is not invalidated

by a LDPCTX instruction. Software can use an MTPR to the Vector TB
Invalidate All (VTBIA) register to invalidate only the vector TB. An MTPR
to VTBIA results in no operation on a processor that uses a common TB
for the scalar and vector processors.

Updates to memory management registers and invalidates of translation
buffer entries in the vector processor take place even when the vector
processor is disabled (VPSR<VENS> is clear). However, the vector processor
may load translation buffer entries only when the vector processor is
executing a vector memory access instruction.

The vector processor implements the modify-fault option if its scalar
processor implements the virtual-machine option.

Vector memory access instructions must not be used to read or write page
tables. If a vector instruction is used to read or write page tables, the
results are UNPREDICTABLE.

Vector instructions are not allowed to reference 1/O space. If a vector
instruction references I/O space, the results are UNPREDICTABLE.

Issuing vector instructions with memory management disabled causes the
operation of the vector processor to be UNDEFINED. Disabling memory
management when the vector processor is busy (VPSR<BSY> is set) also
causes the operation of the vector processor to be UNDEFINED.

10.9 Hardware Errors

A vector processor implementation may experience error conditions (such
as chip malfunctions, parity errors, or bus errors) that prevent it from
executing and completing instructions and from which it cannot recover
through its own means. Such errors are termed hardware errors and
may occur at anytime, even when the vector processor is already disabled.
Vector processor hardware errors do not normally halt the scalar processor.

At some point after the error condition occurs, the vector processor reports
the error to the scalar processor. The reporting may be accomplished
through a machine check; or by disabling the vector processor, setting
VPSR<IMP>, and generating a vector processor disabled fault when

the next vector instruction is issued. After the error is reported, the

1047

VAX VECTOR ARCHITECTURE
10.9 Hardware Errors

10-48

appropriate software handler will be invoked to diagnose the vector
processor and to determine the severity of the hardware error and whether
the vector processor can be restarted.

During execution, software may wish to force the reporting of hardware
errors encountered by previous vector instructions before issuing further
ones. This can be accomplished by reading the VMAC internal processor
register (IPR) and by waiting for VPSR<BSY> to become clear.

An MFPR from VMAC ensures that all pending vector memory
instructions have finished or are suspended by an asynchronous memory
management exception, and that all vector-processor hardware errors
encountered by these instructions are reported by the time the MFPR
completes. Errors are handled as follows:

¢ If the errors are reported by machine check, then the exception
is taken either upon the VMAC itself, or upon the instruction
immediately following the VMAC.

* If the errors are reported through VPSR<IMP>, the vector processor
sets VPSR<IMP> and disables itself by the time the scalar processor
completes VMAC. Subsequently, a vector processor disabled fault will
occur when the next vector instruction is issued. A read of VPSR
immediately after the VMAC completes will find the vector processor
disabled and VPSR<IMP> set.

Waiting for VPSR<BSY> to become clear before issuing further
instructions ensures that all previous non-memory-access instructions
have been finished or are suspended by an asynchronous memory
management exception, and that all vector-processor hardware errors
encountered by these instructions are reported by the time VPSR<BSY>
becomes clear. Errors are handled as follows:

¢ If the errors are reported by machine check, then the exception is
taken either upon the first instruction during which the new state
of VPSR<BSY> becomes visible to the scalar processor or upon the
instruction immediately thereafter.

¢ If the errors are reported through VPSR<IMP>, the vector processor
sets VPSR<IMP> and disables itself by the time it clears VPSR<BSY>.
Subsequently, a vector processor disabled fault will occur when the
next vector instruction is issued. The first MFPR instruction which
reads VPSR<BSY> as clear will also read VPSR<VEN> as clear and
VPSR<IMP> as set.

VMAC does not ensure that hardware errors encountered by pending
non-memory-access instructions will be reported. Waiting for VPSR<BSY>
to become clear does not ensure that vector-processor hardware errors
encountered by vector memory instructions are reported.

Software can force the reporting of hardware errors encountered during
the execution of previous vector instructions (both memory and non-
memory) by waiting for VPSR<BSY> to become clear and then by issuing
an MFPR from VMAC. This technique can be used during scalar context
switching to cause hardware errors resulting from the execution of vector

VAX VECTOR ARCHITECTURE
10.9 Hardware Errors

instructions for the current process to be reported before that process is
context-switched.

10.10 Vector Memory Access Instructions

There are alignment, stride, address specifier context, and access mode
considerations for the vector memory access instructions.

10.10.1 Alignment Considerations

Vector memory access instructions require their vector operands to be
naturally aligned in memory. Longwords must be aligned on longword
boundaries. Quadwords must be aligned on quadword boundaries. If
any vector element is not naturally aligned in memory, an access control
violation occurs. For further details, see Section 10.6.1, Vector Memory
Management Exception Handling.

The scalar operands need not be naturally aligned in memory.

10.10.2 Stride Considerations

A vector’s stride is defined as the number of memory locations (bytes)
between the starting address of consecutive vector elements. A contiguous
vector that has longword elements has a stride of four; a contiguous vector
that has quadword elements has a stride of eight.

10.10.3 Context of Address Specifiers

The base address specifier used by the vector memory access instructions
is of byte context, regardless of the data type. Arrays are addressed as
byte strings. Index values in array specifiers are multiplied by one, and
the amount of autoincrement or autodecrement, when either of these
modes is used, is one.

10.10.4 Access Mode

A vector memory access instruction is executed using the access mode in
effect when the instruction is issued by the scalar processor.

10.10.5 Memory Instructions

This section describes VAX vector architecture memory instructions.

10-49

VAX Instruction Set
VLD

VLD

Load Memory Data into Vector Register

IR

FORMAT VLDL [/M/[0]|1]] |base, stride, Ve

VLDQ [/M[0|1]] Dbase, stride, Ve
ARCHITECTURE

Format

opcode cntrl.rw, base.ab, stride.rl

opcodes

34FD VLDL Load Longword Vector from Memory to Vector Register

36FD vLDQ Load Quadword Vector from Memory to Vector Register

vector control word

151413 12 11 87 43 0
MMM
o|T|!1]|0 0 0 Ve
E|F

ZK-1457A-GE
exceptions

access control violation
translation not valid
vector alignment

DESCRIPTION The source operand vector is fetched from memory and is written to vector
destination register Ve. The length of the vector is specified by VLR. The
virtual address of the source vector is computed using the base address
and the stride. The address of element i (0 LEQU i LEQU (VLR-1)) is
computed as {base+{i*stride}}. The stride can be positive, negative, or zero.

In VLDL, bits <31:0> of each destination vector element receive the
memory data and bits <63:32> are UNPREDICTABLE.

If any vector element operated upon is not naturally aligned in memory, a
vector alignment exception occurs.

The results of VLD are unaffected by the setting of ecntrl<MI>. For more
details about the use of entrl<MI>, see Section 10.3.3, Modify Intent bit.

10-50

VAX Instruction Set
VLD

If the addressing mode of the BASE operand is immediate, the results of
the instruction are UNPREDICTABLE.

An implementation may load the elements of the vector in any order,
and more than once. When a vector processor memory management
exception occurs, the contents of the destination vector elements are
UNPREDICTABLE.

10-51

VAX Instruction Set
VGATH

VGATH

Gather Memory Data into Vector Register

FORMAT VGATHL [/M[0|1]] base, Vb, Vc

VGATHQ [/M[011]] base, Vb, Vc

ARCHITECTURE

Format

opcode cntrl.rw, base.ab

opcodes

35FD VGATHL Gather Longword Vector from Memory to Vector Register
37FD VGATHQ Gather Quadword Vector from Memory to Vector Register

vector_control_word

15141312 11 87 43 0
MIM{M
O|T{I}O 0 Vb Ve
E|F

ZK-1458A-GE
exceptions

access control violation
translation not valid
vector alignment

L
DESCRIPTION The source operand vector is fetched from memory and is written to vector
destination register Vc. The length of the vector is specified by VLR. The
virtual address of the vector is computed using the base address and the
32-bit offsets in vector register Vb. The address of element i (0 LEQU
i LEQU (VLR-1)) is computed as {base+Vb[i]}. The 32-bit offset can be
positive, negative, or zero.

In VGATHL, bits <31:0> of each destination vector element receive the
memory data and bits <63:32> are UNPREDICTABLE.

If any vector element operated upon is not naturally aligned in memory, a
vector alignment exception occurs.

10-52

VAX Instruction Set
VGATH

The results of VGATH are unaffected by the setting of cntrl<MI>. For
more details about the use of entrl<MI>, see Section 10.3.3, Modify Intent
bit.

If the addressing mode of the BASE operand is immediate, the results of
the instruction are UNPREDICTABLE.

An implementation may load the elements of the vector in any order,
and more than once. When a vector processor memory management
exception occurs, the contents of the destination vector elements are
UNPREDICTABLE.

If the same vector register is used as both source and destination, the
result of the VGATH is UNPREDICTABLE.

10-53

VAX Instruction Set
VST

VST

Store Vector Register Data into Memory

FORMAT VSTL [/011] Ve, base, stride

VSTQ [/011] Ve, base, stride

ARCHITECTURE

Format

opcode cntrl.rw, base.ab, stride.rl

opcodes
9CFD VSTL Store Longword Vector from Vector Register to Memory
9EFD VSTQ Store Quadword Vector from Vector Register to Memory

vector_control_word

1514 13 12 11 87 43 0
MM
O]Tjo0]l0 0 0 Ve
E|F

ZK-1459A-GE
exceptions

access control violation
translation not valid
vector alignment
modify

_

DESCRIPTION The source operand in vector register Vc is written to memory. The length
of the vector is specified by the Vector Length Register (VLR). The virtual
address of the destination vector is computed using the base address
and the stride. The address of element i (0 LEQU i LEQU (VLR-1)) is
computed as {base+{i*stride}}. The stride can be positive, negative, or zero.

If any vector element operated upon is not naturally aligned in memory, a
vector alignment exception occurs.

For a nonzero stride value, an implementation may store the vector
elements in parallel; therefore the order in which these elements are
stored is UNPREDICTABLE. Furthermore, if the nonzero stride causes

10-54

VAX Instruction Set
VST

result locations in memory to overlap, then the values stored in the
overlapping result locations are also UNPREDICTABLE.

For a stride value of zero, the highest numbered register element destined
for the single memory location becomes the final value of that location.

When a vector processor memory management exception occurs, it is
UNPREDICTABLE whether the vector processor writes any result
location for which an exception did not occur. If the fault condition can
be eliminated by software and the instruction restarted then the vector
processor will ensure that all destination locations are written.

If the destination vector overlaps the vector instruction control word, base,
or stride operand, the result of the instruction is UNPREDICTABLE.

If the addressing mode of the BASE operand is immediate, the results of
the instruction are UNPREDICTABLE.

10--55

VAX Instruction Set

VSCAT

VSCAT

Scatter Vector Register Data into Memory

FORMAT VSCATL [/011] Ve, base, Vb
VSCATQ /[/011)] Ve, base, Vb
ARCHITECTURE
Format
opcode cntrl.rw, base.ab
opcodes
9DFD VSCATL Scatter Longword Vector from Vector Register to Memory
9FFD VSCATQ Scatter Quadword Vector from Vector Register to Memory
vector_control_word
151413 12 11 87 43 0
MM
O|T|0]0 0 Vb Vc
E|F
ZK-1460A-GE
exceptions
access control violation
translation not valid
vector alignment
modify
R
DESCRIPTION The source vector operand Vc is written to memory. The length of the

10-56

vector is specified by the Vector Length Register (VLR) register. The
virtual address of the destination vector is computed using the base
address operand and the 32-bit offsets in vector register Vb. The address
of element i (0 LEQU i LEQU (VLR-1)) is computed as {base+VDb[il}. The
32-bit offset can be positive, negative, or zero.

If any vector element operated upon is not naturally aligned in memory, a
vector alignment exception occurs.

VAX Instruction Set
VSCAT

An implementation may store the vector elements in parallel; therefore,
the order in which elements are stored to different memory locations is
UNPREDICTABLE. In the case where multiple elements are destined for
the same memory location, the highest numbered element among them
becomes the final value of that location.

When a vector processor memory management exception occurs, it is
UNPREDICTABLE whether the vector processor writes any result
location for which an exception did not occur. If the fault condition can
be eliminated by software and the instruction restarted, then the vector
processor will ensure that all destination locations are written.

If the destination vector overlaps the vector instruction control word or
base operand, the result of the instruction is UNPREDICTABLE.

If the addressing mode of the BASE operand is immediate, the results of
the instruction are UNPREDICTABLE.

10.11 Vector Integer Instructions

This section describes VAX vector architecture integer instructions.

10-57

VAX Instruction Set

VADDL

VADDL

Vector Integer Add

FORMAT
vector + vector:
VVADDL [/011] Va, Vb, Ve
scalar + vector:
VSADDL [/011] scalar, Vb, Ve
ARCHITECTURE
Format
vector + vector: opcode cntrl.rw
scalar + vector: opcode cntrl.rw, addend.rl
opcodes
80FD VVADDL Vector Vector Add Longword
81FD VSADDL Vector Scalar Add Longword
vector_control_word
151413 12 11 87 43 0
MIM|E Va
O|T|X}|0 or Vb Ve
E|F|C 0
ZK-1461A-GE
exceptions
integer overflow
DESCRIPTION The scalar addend or Va operand is added, elementwise, to vector register

10-58

Vb and the 32-bit sum is written to vector register Vc. Only bits <31:0>
of each vector element participate in the operation. Bits <63:32> of the
elements of vector register Vc are UNPREDICTABLE. The length of the
vector is specified by the Vector Length Register (VLR).

If integer overflow is detected and cntrl<EXC> is set, the exception type
and destination register number are recorded in the Vector Arithmetic
Exception Register (VAER) and the vector operation is allowed to complete.
On integer overflow, the low-order 32 bits of the true result are stored in
the destination element.

VAX Instruction Set
VCMPL

VCMPL

Vector Integer Compare

FORMAT

vector—vector:

VVGTRL
VVEQLL
] VVLSSL

VVLEQL
VVNEQL

scalar-vector:

(VSGTRL)
VSEQLL
VSLSSL
VSLEQL
VSNEQL

| VSGEQL

{ VVGEQL)

[1011]

[/011]

Va, Vb

src, Vb

ARCHITECTURE

Format
vector-vector:

scalar-vector:

opcodes

opcode

opcode

COFD VVCMPL
C1FD VSCMPL

Vector Vector Compare Longword
Vector Scalar Compare Longword

vector_control_word

cntrl.rw

entrl.rw, sre.rl

1514 13 12 11 87 43
M|M Va
o|T|olo or Vb m‘g
E|F 0

ZK-1462A-GE

10-59

VAX Instruction Set

VCMPL
The condition being tested is determined by cntrl<2:0>, as follows:
Value of cntrl<2:0> Meaning
0 Greater than
1 Equal
2 Less than
3 Reserved'
4 Less than or equal
5 Not equal
6 Greater than or equal
7 Reserved'
1Vector integer compare instructions that specify reserved values of cntri<2:0> produce
UNPREDICTABLE results.
DESCRIPTION The scalar or Va operand is compared, elementwise, with vector register

10-60

Vb. The length of the vector is specified by the Vector Length Register
(VLR). For each element comparison, if the specified relationship is
true, the Vector Mask Register bit (VMR<i>) corresponding to the vector
element is set to one; otherwise, it is cleared. If cntrl<MOE> is set, VMR
bits corresponding to elements that do not match cntrl<MTF> are left
unchanged. VMR bits beyond the vector length are left unchanged. Only
bits <31:0> of each vector element participate in the operation.

VAX Instruction Set
VMULL

VMULL

Vector Integer Multiply

FORMAT .
vector * vector:
VVMULL (/vio1j Va, Vb, Ve
scalar * vector:
VSMULL [/VI0|1]] scalar, Vb, Ve
ARCHITECTURE
Format
vector * vector: opcode cntrl.rw
scalar * vector: opcode cntrl.rw, mulr.rl
opcodes
AOFD VVMULL Vector Vector Multiply Longword
A1FD VSMULL Vector Scalar Multiply Longword
vector_control_word
1514 13 12 11 87 43 0
MM Va
Oo|T{o0|0O or Vb Ve
E|F 0
ZK-1463A-GE
exceptions
integer overflow
DESCRIPTION The scalar multiplier or vector operand Va is multiplied, elementwise,

by vector operand Vb and the least significant 32 bits of the signed 64-
bit product are written to vector register Ve. Only bits <31:0> of each
vector element participate in the operation. Bits <63:32> of the elements
of vector register Vc are UNPREDICTABLE. The length of the vector is
specified by the Vector Length Register (VLR).

10-61

VAX Instruction Set

VMULL

10-62

If integer overflow is detected and cntrl<EXC> is set, the exception
condition type and destination register number are recorded in the Vector
Arithmetic Exception Register (VAER) and the vector operation is allowed
to complete. On integer overflow, the low-order 32 bits of the true result
are stored in the destination element.

VAX Instruction Set

VSUBL
Vector Integer Subtract
FORMAT
vector—vector:
VVSUBL [/vio11]] Va, Vb, Ve
scalar-vector:
VSSUBL [/V[0|1]] scalar, Vb, Ve
ARCHITECTURE
Format
vector-vector: opcode cntrl.rw
scalar—vector: opcode cntrl.rw, min.rl
opcodes
88FD VVSUBL Vector Vector Subtract Longword
89FD VSSUBL Vector Scalar Subtract Longword
vector_control_word
1514 1312 11 87 43 0
M|M|E Va
O|T{X]|0 or Vb Ve
E|F]C 0
ZK-1461A-GE
exceptions
integer overflow
—]
DESCRIPTION The vector operand Vb is subtracted, elementwise, from the scalar

minuend or vector operand Va. The 32-bit difference is written to
vector register Ve. Only bits <31:0> of each vector element participate
in the operation. Bits <63:32> of the elements of vector register Vc are
UNPREDICTABLE. The length of the vector is specified by the Vector
Length Register (VLR).

If integer overflow is detected and cntrl<EXC> is set, the exception
condition type and destination register number are recorded in the Vector
Arithmetic Exception Register (VAER) and the vector operation is allowed

10-63

VAX Instruction Set
VSUBL

to complete. On integer overflow, the low-order 32 bits of the true result
are stored in the destination element.

10.12 Vector Logical and Shift Instructions

This section describes VAX vector architecture logical and shift
instructions.

10-64

VAX Instruction Set
VBIC, VBIS, and VXOR

VBIC, VBIS, and VXOR

Vector Logical Functions

FORMAT

vector op vector:
{ VVBISL

VVXORL } [/viol 1] Va, Vo, Ve

VVBICL
vector op scalar:

{ VSBISL

VSXORL } [/V[0)1]] scalar, Vb, Ve

VSBICL

ARCHITECTURE

Format
vector op vector: opcode
vector op scalar: opcode

opcodes

C8FD VVBISL
E8FD VVXORL

cntrl.rw

entrl.rw, sre.ri

Vector Vector Bit Set Longword
Vector Vector Exclusive-OR Longword

CCFD VVBICL
CoFD VSBISL

E9FD VSXORL

CDFD VSBICL

vector_control_word

1514 13 12 11

Vector Vector Bit Clear Longword
Vector Scalar Bit Set Longword

Vector Scalar Exclusive-OR Longword

Vector Scalar Bit Clear Longword

87 43 0

MIM
OofTjo|0
E|F

Va
or

Vb Ve

exceptions

None.

ZK-1463A-GE

10-65

VAX Instruction Set
VBIC, VBIS, and VXOR

DESCRIPTION

10-66

The scalar src or vector operand Va is combined, elementwise, using the
specified Boolean function, with vector register Vb and the result is written
to vector register Vc. Only bits <31:0> of each vector element participate
in the operation. Bits <63:32> of the elements of Vb are written into bits
<63:32> of the corresponding elements of Vc. The length of the vector is
specified by the Vector Length Register (VLR).

VAX Instruction Set
VSL

VSL

Vector Shift Logical

FORMAT .
vector shift count:
VVSRLL
Viol1 Va, Vb, Vi
{VVSLLL }ooovor) Ve ¢
scalar shift count:
VSSRLL
1 t, Vb, Vi
{veaarL | (voiur en c
ARCHITECTURE
Format
vector shift count: opcode cntrl.rw
scalar shift count: opcode cntrl.rw, cnt.rl
opcodes
EOFD VVSRLL Vector Vector Shift Right Logical Longword
E4FD VVSLLL Vector Vector Shift Left Logical Longword
E1FD VSSRLL Vector Scalar Shift Right Logical Longword
ESFD VSSLLL Vector Scalar Shift Left Logical Longword
vector_control_word
15 1413 12 11 87 43 0
MM Va
Oo|T|0]|0 or Vb Ve
E|F 0
ZK-1463A-GE
exceptions
None.
DESCRIPTION Each element in vector register Vb is shifted logically left or right 0 to

31 bits as specified

by a scalar count operand or vector register Va. The

shifted results are written to vector register Vc. Zero bits are propagated
into the vacated bit positions. Only bits <4:0> of the count operand and

bits <31:0> of each

Vb element participate in the operation. Bits <63:32>

of the elements of vector register Vc are UNPREDICTABLE. The length of
the vector is specified by the Vector Length Register (VLR).

10-67

VAX Instruction Set
10.13 Vector Floating-Point Instructions

10.13 Vector Floating-Point Instructions

The VAX vector architecture provides instructions for operating on
F_floating, D_floating, and G_floating operand formats. The floating-
point arithmetic instructions are add, subtract, compare, multiply, and
divide. Data conversion instructions are provided to convert operands
between D_floating, G_floating, F_floating, and longword integer.

Rounding is performed using standard VAX rounding rules. The accuracy
of the vector floating-point instructions matches that of the scalar floating-
point instructions. Refer to the section on floating-point instructions in the
VAX Architecture Reference Manual for more information.

10.13.1 Vector Floating-Point Exception Conditions

10-68

All vector floating-point exception conditions occur asynchronously with
respect to the scalar processor. These exception conditions do not interrupt
the scalar processor. If the exception condition is enabled, then the
exception condition type and destination register number are recorded

in the Vector Arithmetic Exception Register (VAER), and a reserved
operand in the format of the instruction’s data type is written into the
destination register element. Encoded in this reserved operand is the
exception condition type. After recording the exception and writing the
appropriate result into the destination register element, the instruction
encountering the exception continues executing to completion.

If a vector convert floating to integer instruction encounters a source
element that is a reserved operand, an UNPREDICTABLE result rather
than a reserved operand is written into the destination register element.

Figure 1013 shows the encoding of the reserved operand that is written
for vector floating-point exceptions. Consistent with the definition

of a reserved operand (as defined in Section 10.13.2, Floating-Point
Instructions) the sign bit (bit <15>) is one and the exponent (bits <14:7>
for F_floating and D_floating, and bits <14:4> for G_floating) is zero.
When the reserved operand is written in F_floating or D_floating format,
bits <6:4> are also zero. The exception condition type (ETYPE) is encoded
in bits <3:0>, as shown in Table 10-16. If a reserved operand is divided by
zero, both ETYPE bits may be set. The state of all other bits in the result
(denoted by shading) is UNPREDICTABLE.

If the floating underflow exception condition is suppressed by cntrl<EXC>,
a zero result is written to the destination register element and no further
action is taken. Floating overflow, floating divide by zero, and floating
reserved operand are always enabled.

VAX Instruction Set

10.13 Vector Floating-Point Instructions

Figure 10-13 Encoding of the Reserved Operand

ETYPE Ve [i]<31:0>

a. F_floating
31 16 15 14 76 43 0
— 1 5 5
b. D_floating
7 6 43 0

31 16 15 14

c. G_floating

Ve [i] <31:0>
Ve [i]<63:32>

43 0

31 16 15 14

'Vec[i] <31:0>
Ve [i] <63:32>

ZK-1464A-GE

Table 10-16 Encoding of the Exception Condition Type (ETYPE)

Bit

Exception Condition Type

<0>
<1>
<2>

<3>

Floating underflow
Floating divide by zero
Floating reserved operand
Floating overflow

10.13.2 Floating-Point Instructions

This section describes VAX vector architecture floating-point instructions.

10-69

VAX Instruction Set
VADD

VADD

Vector Floating Add

FORMAT

vector + vector:

VVADDF
{ VVADDD [/ufor1j Va, Vb, Ve
VVADDG

scalar + vector:

VSADDF
{ VSADDD } [/U[0|1]] scalar, Vb, Ve
VSADDG

ARCHITECTURE

Format
vector + vector:
opcode cntrl.rw
scalar + vector (F_floating):
opcode cntrl.rw, addend.rl
scalar + vector (D_ and G_floating):

opcode cntrl.rw, addend.rq

opcodes

84FD VVADDF Vector Vector Add F_Floating
85FD VSADDF Vector Scalar Add F_Floating
86FD VVADDD Vector Vector Add D_Floating
87FD VSADDD Vector Scalar Add D_Floating
82FD VVADDG Vector Vector Add G_Floating
83FD VSADDG Vector Scalar Add G_Floating

vector_control_word

15 14 13 12 11 87 43 0
M|M|E Va
O|TIX|O0 or Vb Ve
E{F|C 0

ZK-1461A-GE

10-70

VAX Instruction Set
VADD

exceptions

floating overflow
floating reserved operand
floating underflow

DESCRIPTION

— ——
The source addend or vector operand Va is added, elementwise, to vector
register Vb and the sum is written to vector register Vc. The length of the
vector is specified by the Vector Length Register (VLR).

In VxADDF, only bits <31:0> of each vector element participate in
the operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating
overflow or floating reserved operand occurs, an encoded reserved operand
is stored as the result and the exception condition type and destination
register number are recorded in the Vector Arithmetic Exception Register
(VAER). The vector operation is then allowed to complete. If cntrl<EXC>
is clear, zero is written to the destination element when an exponent
underflow occurs and no other action is taken.

10-71

VAX Instruction Set
VCMP

VCMP

Vector Floating Compare

FORMAT " VVGTRF

VVGTRD
VVGTRG
VVEQLF
VVEQLD
VVEQLG
VVLSSF

VVLSSD

VVLSSG

VVLEQF
VVLEQD
VVLEQG
VVNEQF
VVNEQD
VVNEQG
VVGEQF
VVGEQD
VVGEQG

VSGTRF
VSGTRD
VSGTRG
VSEQLF
VSEQLD
VSEQLG
VSLSSF
VSLSSD
VSLSSG
VSLEQF
VSLEQD
VSLEQG
VSNEQF
VSNEQD
VSNEQG
VSGEQF
VSGEQD
| VSGEQG

vector-vector:)

-~

scalar-vector: |

10-72

4

[/ufo 1 1jj

(/v 1jj

Va, Vb

src, Vb

VAX Instruction Set

VCMP

ARCHITECTURE

Format

vector—vector:

opcode

entrl.rw

scalar—vector (F_floating):

opcode

cntrl.rw,

sre.rl

scalar-vector (D_ and G_floating):

opcode

opcodes

C4FD
C5FD
CeFD
C7FD
C2FD
C3FD

entrl.rw,

VVCMPF
VSCMPF
VVCMPD
VSCMPD
VVCMPG
VSCMPG

vector_control_word

sre.rq

Vector Vector Compare F_floating
Vector Scalar Compare F_floating
Vector Vector Compare D_floating
Vector Scalar Compare D_floating
Vector Vector Compare G_floating
Vector Scalar Compare G_floating

1514 13 12 11 87 43 0
MIM Va
o|T|olo or Vb ;’J'r‘,f’:
E|F 0

ZK-1462A-GE

The condition being tested is determined by cntrl<2:0>, as follows:

Value of cn

tri<2:0>

Meaning

N o ks W DN =+ O

Greater than

Equal

Less than

Reserved'

Less than or equal
Not equal

Greater than or equal
Reserved'

Wector integer compare instructions that specify reserved values of cntrl<2:0> produce
UNPREDICTABLE results.

10-73

VAX Instruction Set

VCMP
Note: Cntrl<3> should be zero; if it is set, the results of the instruction
are UNPREDICTABLE.
exceptions
floating reserved operand
DESCRIPTION The scalar or vector operand Va is compared, elementwise, with vector

10-74

register Vb. The length of the vector is specified by the Vector Length
Register (VLR). For each element comparison, if the specified relationship
is true, the Vector Mask Register bit (VMR<i>) corresponding to the vector
element is set to one, otherwise it is cleared. If cntrl<MOE> is set, VMR
bits corresponding to elements that do not match cntrl<MTF> are left
unchanged. VMR bits beyond the vector length are left unchanged.

If an element being compared is a reserved operand, VMR<i> is
UNPREDICTABLE. In VXCMPF, only bits <31:0> of each vector element
participate in the operation.

If a floating reserved operand exception occurs, the exception condition
type is recorded in the Vector Arithmetic Exception Register (VAER) and
the vector operation is allowed to complete.

Note that for this instruction, no bits are set in the VAER destination
register mask when an exception occurs.

VAX Instruction Set
VVCVT

VVCVT

Vector Convert

FORMAT VVCVTLF

VVCVTLD
VVCVTLG
VVCVTFL
VVCVTRFL
VVCVTFD
VVCVTFG (/o1 b, Ve
VVCVTDL
VVCVTDF
VVCVTRDL
VVCVTGL
VVCVTGF
VVCVTRGL

)

ARCHITECTURE

Format

opcode cntrl.rw

opcodes

ECFD VVCVT Vector Convert

vector_control_word

151413 12 11 87 43 0

E

MM
o|T|x|o mc Vb Ve
E|F|c

ZK-1465A-GE

Cntri<11:8> specifies the conversion to be performed, as follows:

cntri<11:8> Meaning

1111 CVTRGL (Convert Rounded G_Floating to Longword)
1110 Reserved’
1101 CVTGF (Convert Rounded G_Floating to F_Floating)

Vector convert instructions that specify reserved values of cntri<11:8> produce
UNPREDICTABLE results.

10-75

VAX Instruction Set

VVCVT

cntri<11:8> Meaning
1100 CVTGL (Convert Truncated G_Floating to Longword)
1011 Reserved'
1010 CVTRD (Convert Rounded D_Floating to Longword)
1001 CVTDF (Convert Rounded D_Floating to F_Floating)
1000 CVTDL (Convert Truncated D_Floating to Longword)
0111 CVTFG (Convert F_Floating to G_Floating (exact))
o0t10 CVTFD (Convert F_Floating to D_Floating (exact))
0101 CVTRF (Convert Rounded F_Floating to Longword)
0100 CVTFL (Convert Truncated F_Floating to Longword)
0011 CVTLG (Convert Longword to G_Floating (exact))
0010 CVTLD (Convert Longword to D_Floating (exact))
0001 CVTLF (Convert Rounded Longword to F_Floating)
0000 Reserved'
'Vector convert instructions that specify reserved values of cntrl<11:8> produce
UNPREDICTABLE results.
exceptions

floating overflow

floating reserved operand

floating underflow

integer overflow

DESCRIPTION The vector elements in vector register Vb are converted and results are

10-76

written to vector register Ve. Cntrl<11:8> specifies the conversion to be
performed. The length of the vector is specified by the Vector Length
Register (VLR). Bits <63:32> of V¢ are UNPREDICTABLE for instructions
that convert from D_floating or G_floating to F_floating or longword.
When CVTRGL, CVTRDL, and CVTRFL round, the rounding is done in
sign magnitude, before conversion to two’s complement.

If an integer overflow occurs when cntrl<EXC> is set, the low-order 32 bits
of the true result are written to the destination element as the result, and
the exception condition type and destination register number are recorded
in the Vector Arithmetic Exception Register (VAER). The vector operation
is then allowed to complete. If integer overflow occurs when cntrl<EXC> is
clear, the low-order 32 bits of the true result are written to the destination
element, and no other action is taken.

For vector convert floating to integer, where the source element is

a reserved operand, the value written to the destination element is
UNPREDICTABLE. In addition, the exception type and destination
register number are recorded in the VAER. The vector operation is then
allowed to complete.

VAX Instruction Set
VVCVT

For vector convert floating to floating instructions, if floating underflow
occurs when cntrl<EXC> is clear, zero is written to the destination
element, and no other action is taken. The vector operation is then
allowed to complete.

For vector convert floating to floating instructions, if floating underflow
occurs with cntrl<EXC> set or if a floating overflow or reserved operand
occurs, an encoded reserved operand is written to the destination element,
and the exception condition type and destination register number are
recorded in the VAER. The vector operation is then allowed to complete.

10-77

VAX Instruction Set
VDIV

VDIV

Vector Floating Divide

FORMAT

vector [vector:

VVDIVF
{ VVDIVD } [/U[0] 1]] Va, Vb, Ve

VVDIVG

scalar /vector:
VSDIVF
VSDIVD } [1U0| 1]] scalar, Vb, Ve
VSDIVG

ARCHITECTURE

Format
vector/vector:

opcode cnirl.rw
scalar/vector (F_floating):

opcode cntrl.rw, divd.rl
scalar/vector (D_ and G_floating):

opcode cntrl.rw, divd.rq

opcodes

ACFD VVDIVF Vector Vector Divide F_floating
ADFD VSDIVF Vector Scalar Divide F_floating
AEFD VVDIVD Vector Vector Divide D_floating
AFFD VSDIVD Vector Scalar Divide D_floating
AAFD VVDIVG Vector Vector Divide G_floating
ABFD VSDIVG Vector Scalar Divide G_floating

vector_control_word

15141312 11 87 43 0
MIM|E Va
O|T|X}|o0 or Vb Ve
E|F|C 0

ZK-1461A-GE

10-78

VAX Instruction Set
VDIV

exceptions

floating divide by zero
floating overflow

floating reserved operand
floating underflow

DESCRIPTION

The scalar dividend or vector register Va is divided, elementwise, by the
divisor in vector register Vb and the quotient is written to vector register
Vec. The length of the vector is specified by the Vector Length Register
(VLR).

In VxDIVF, only bits <31:0> of each vector element participate in
the operation; bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating
overflow, divide by zero or reserved operand occurs, an encoded reserved
operand is stored as the result and the exception condition type and
destination register number are recorded in the Vector Arithmetic
Exception Register (VAER). The vector operation is then allowed to
complete. If cntrl<EXC> is clear, zero is written to the destination element
when an exponent underflow occurs and no other action is taken.

10-79

VAX Instruction Set
VMUL

VMUL

Vector Floating Multiply

FORMAT

vector * vector:

VVMULD

{ VVMULF
VVMULG

scalar * vector:

VSMULD

{ VSMULF
VSMULG

} (/oo 1jj

} /ooy Va, Vb, Ve

scalar, Vb, Ve

ARCHITECTURE

Format

vector * vector:

opcode

entrl.rw

scalar * vector (F_floating):

opcode

entrl.rw, mulr.rl

scalar * vector (D_ and G_floating):

opcode

opcodes

A4FD
A5FD
A6FD
A7FD
A2FD
A3FD

vector_control_word

cntrl.rw, mulr.rq

VVMULF
VSMULF
VVMULD
VSMULD
VVMULG
VSMULG

Vector Vector Multiply F_floating
Vector Scalar Multiply F_floating
Vector Vector Multiply F_floating
Vector Scalar Multiply D_floating
Vector Vector Multiply G_floating
Vector Scalar Multiply G_floating

1514 13 12 11 87 43 0
MIM|E Va
O|TIX]|O or Vb Ve
E|F|C 0

ZK-1461A-GE

10-80

VAX Instruction Set
VMUL

exceptions

floating overflow
floating reserved operand
floating underflow

DESCRIPTION

The multiplicand in vector register Vb is multiplied, elementwise, by the
scalar multiplier or vector operand Va and the product is written to vector
register Vc. The length of the vector is specified by the Vector Length
Register (VLR).

In VXMULTF, only bits <31:0> of each vector element participate in
the operation. Bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If a floating underflow occurs when cntrl<EXC> is set or if a floating
overflow or reserved operand occurs, an encoded reserved operand is
stored as the result and the exception condition type and destination
register number are recorded in the Vector Arithmetic Exception Register
(VAER). The vector operation is then allowed to complete. If cntrl<EXC>
is clear, zero is written to the destination element when an exponent
underflow occurs and no other action is taken.

10-81

VAX Instruction Set
VSUB

VSUB

Vector Floating Subtract

FORMAT

M

vector-vector:

VVSUBD

{ VVSUBF
VVSUBG

scalar-vector:

VSSUBD

{ VSSUBF
VSSUBG

} [/ufo 1y

} [/ufoi1j Va, Vb, Ve

scalar, Vb, Ve

ARCHITECTURE

Format

vector—vector:

opcode

cntrl.rw

scalar—vector (F_floating):

opcode

cntrl.rw, min.rl

scalar-vector (D_ and G_floating):

opcode

opcodes

8CFD
8DFD
8EFD
8FFD
8AFD
8BFD

vector_control_word

entrl.rw, min.rq

VVSUBF
VSSUBF
VVSUBD
VSSUBD
VVSUBG
VSSUBG

Vector Vector Subtract F_floating
Vector Scalar Subtract F_floating
Vector Vector Subtract D_floating
Vector Scalar Subtract D_floating
Vector Vector Subtract G_floating
Vector Scalar Subtract G_floating

151413 12 11 87 43 0
M{M]E Va
O|T|{X]|0 or Vb Ve
E|F|C 0

ZK-1461A-GE

10-82

VAX Instruction Set
vSuB

exceptions

floating overflow
floating reserved operand
floating underflow

DESCRIPTION

Vector register Vb is subtracted, elementwise, from the scalar minuend or
vector register Va and the difference is written to vector register Vc. The
length of the vector is specified by the Vector Length Register (VLR).

In VxSUBF, only bits <31:0> of each vector element participate in
the operation; bits <63:32> of the destination vector elements are
UNPREDICTABLE.

If a floating underflow occurs when entrl<EXC> is set or if a floating
overflow or reserved operand occurs, an encoded reserved operand is
stored as the result and the exception condition type and destination
register number are recorded in the Vector Arithmetic Exception Register
(VAER). The vector operation is then allowed to complete. If cntrl<EXC>
is clear, zero is written to the destination element when an exponent
underflow occurs and no other action is taken.

10.14 Vector Edit Instructions

This section describes VAX vector architecture edit instructions.

10-83

VAX Instruction Set

VMERGE

VMERGE

Vector Merge

FORMAT

vector vector merge:
VVMERGE [/ot1] Va, Vb, Ve

vector scalar merge:

VSMERGE

VSMERGEF
VSMERGED
VSMERGEG

[/011] sre, Vb, Ve

ARCHITECTURE

Format
vector-vector: opcode cnitrl.rw

vector-scalar: opcode cntrl.rw,src.rq

opcodes

EEFD VVMERGE Vector Vector Merge
EFFD VSMERGE Vector Scalar Merge

vector_control_word

1514 13 12 11 87 43 0

M Va
olT|lO]O or Vb Vc
F 0

ZK-1466A-GE

exceptions

None.

DESCRIPTION

10-84

—————————————e]
The scalar src or vector operand Va is merged, elementwise, with vector
register Vb and the resulting vector is written to vector register Ve. The
length of the vector operation is specified by the Vector Length Register
(VLR).

VAX Instruction Set
VMERGE

For each vector element, i, if the corresponding Vector Mask Register bit
(VMR<i>) matches cntrl<MTF>, src or Va[i] is written to the destination
vector element Vc[i]. If VMR<i> does not match cntrl<MTF>, Vbli] is
written to the destination vector element.

10-85

VAX Instruction Set
IOTA

IOTA

Generate Compressed lota Vector

e

FORMAT IOTA [/0]1] stride, Ve

ARCHITECTURE

Format

opcode cntrl.rw, stride.rl

opcodes

EDFD IOTA Generate Compressed lota Vector

vector_control_word

1514 13 12 11 87 43 0

M
0[T|{oO]|O 0 0 Ve
F

ZK-1467A-GE

exceptions

None.

]
DESCRI PTION IOTA constructs a vector of offsets for use by the vector gather/scatter
instructions VGATH and VSCAT

IOTA first generates an iota vector of length VLR using the stride operand.
An jota vector is a vector whose first element is zero and whose subsequent
elements are spaced by the stride increment. The stride can be positive,
negative, or zero. For example:

O*stride, l*stride, 2*stride, 3*stride, ..., {VLR-1}*stride

The iota vector is then compressed using the contents of the Vector Mask
Register (VMR). Elements of the iota vector for which the corresponding
Vector Mask Register bit matches cntrl<MTF> are written in contiguous
elements of the destination vector register Vc. Only bits <31:0> of each
lota and destination vector element participate in the operation. Bits
<63:32> of the destination vector elements are UNPREDICTABLE.

10-86

VAX Instruction Set
IOTA

The number of elements written to Ve is returned in the Vector Count
Register (VCR). The values of elements in the destination vector
register between the new value of VCR and the vector length are
UNPREDICTABLE.

Note: If a large value is specified for the stride.rl operand, there is a
chance for integer overflow during calculation of the "tmp <- tmp +
stride" step. In this case, the overflow is ignored. For example:
tmp <- tmp + stride

Value of tmp before above step: FFFFFF00
Value of Stride: FFFFFF00

Value of tmp + stride: 1 FFFFFEO00

Since the overflow is ignored, the new value of tmp
is FFFFFEO0O.

10.15 Miscellaneous Instructions

This section describes VAX vector architecture miscellaneous instructions.

10-87

VAX Instruction Set
MFVP

MFVP

Move from Vector Processor

FORMAT MFVCR

MFVLR

MFVMRLO dst
MFVMRHI

SYNCH

MSYNCH

ARCHITECTURE

Format

opcode regnum.rw, dst.wl
opcodes
31FD MFVP Move from Vector Processor

vector_control_word

None.

exceptions

None.

MFVP instructions that specify reserved values of the regnum operand
produce UNPREDICTABLE results.

DESCRIPTION This instruction can be used to read the Vector Count, Length, and Mask
Registers, and to synchronize a scalar processor with its associated vector
Processor.

When the scalar processor issues an MFVP instruction to the vector
processor, the scalar processor waits for the MFVP result to be written
before processing other instructions.

MFVP from VCR or VLR does not read that register until all previous
write operations to the register are completed. MFVP from VMR<31:0> or
VMR<63:32> does not read that longword of VMR until all previous write
operations to the same longword of VMR are completed; however, this is
not true for previous write operations to the other longword.

SYNC allows software to ensure that the unreported exceptions of all
previously issued vector instructions (including vector memory instructions
in asynchronous memory management mode) are detected and reported

to the scalar processor before the scalar processor proceeds with further
instructions. For more details about SYNC and its exception reporting
nature refer to Section 10.7.1, Scalar/Vector Instruction Synchronization.

10-88

VAX Instruction Set
MFVP

MSYNC allows software to ensure that all previously issued memory
instructions of the scalar/vector processor pair are complete before the
scalar processor proceeds with further instructions. For more details
about MSYNC and its exception reporting nature, refer to Section 10.7.2,
Memory Instruction Synchronization.

The value of the vector control register (VCR, VLR, VMR<31:0>,
VMR<63:32>) delivered by an MFVP depends upon the value of certain
vector register elements and vector control register bits. Unreported
exceptions that occur in the production of these elements and control
register bits are reported by the vector processor prior to the completion of
the MFVP from the vector control register.

In addition, there are vector register elements and vector control register
bits that the value of a vector control register delivered by an MFVP does
not depend upon. It is UNPREDICTABLE whether unreported exceptions
that occur in the production of these elements and control register bits are
reported by the vector processor prior to the completion of the MFVP from
the vector control register. Software must not rely upon the reporting of
these exceptions prior to the completion of the MFVP for the correctness of
program results.

Section 10.5.3.3, Dependences Among Vector Results, gives the necessary
rules to determine what vector control register elements and vector control
register bits the value of a vector control register delivered by an MFVP
depends upon. Examples of MFVP exception reporting using these rules
are found in Section 10.6.5.

When a vector arithmetic exception or memory management exception
(in asynchronous memory management mode) is reported prior to the
completion of an MFVP, the following occur:

¢ The operation of the MFVP does not complete.

e No longword result is written to the scalar destination of the MFVP by
the scalar processor.

e The MFVP itself (rather than the next vector instruction) takes either
a vector processor disabled fault or a memory management fault.

After the appropriate fault has been serviced, the MFVP may be returned
to through an REL If both exception conditions are encountered by an
MFVP, then the MFVP itself takes a vector processor disabled fault. In
this case, after the vector processor disabled fault has been serviced,
returning to the MFVP instruction will cause the asynchronous memory
management exception to be reported.

10-89

VAX Instruction Set
MTVP

MTVP

Move to Vector Processor

FORMAT MTVCR
MTVLR sre
MTVMRLO
MTVMRHI
ARCHITECTURE
Format

opcode regnum.rw, src.rl
opcodes
A9FD MTVP Move to Vector Processor

vector_control_word

None.

exceptions

None.

Move to Vector Processor instructions that specify reserved values of the
regnum operand produce UNPREDICTABLE results.

DESCRIPTION This instruction can be used to write the Vector Count, Length, and Mask
Registers.

The new value of VCR, VLR, or VMR does not affect any prior instructions.
The new value remains in effect for all subsequent vector instructions
executed until a new value is loaded.

10-90

VAX Instruction Set
VSYNC

VSYNC

Synchronize Vector Memory Access

FORMAT VSYNCH

ARCHITECTURE

Format

opcode regnum.rw
opcodes
A8FD VSYNC Synchronize Vector Memory Access

vector_control_word

None.

exceptions

None.

Synchronize Vector Memory Access instructions that specify reserved
values of the regnum operand produce UNPREDICTABLE results.

DESCRIPTION The VSYNC instruction can be used to synchronize memory access
within the vector processor. The instruction allows software to order
the conflicting memory accesses of vector-memory instructions issued
after VSYNC with those of vector-memory instructions issued before
VSYNC. Specifically, VSYNC forces the access of a memory location by
any subsequent vector-memory instruction to wait for (depend upon) the
completion of all prior conflicting accesses of that location by previous
vector-memory instructions. See Section 10.7.1 for more details.

See Section 10.7.5, Required Use of Memory Synchronization Instructions,
for the conditions when VSYNC is not required before a vector store
instruction.

10-91

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

