PHIIIDG
025

P800OM PROGRAMMER’S GUIDE 2

Volume Il : Software Processors

P80OM PROGRAMMER'’S GUIDE 2

Volume lll: Software Processors

Assembly Language
Assembler

Linkage Editor
Overlay Linkage Editor
Line Editor

Debugging Package
ROM Image Generator
Utility Programs

A publication of

Philips Data Systems B.V.

SSS-DOC

Apeldoorn, The Netherlands

Pub. No. 5122 991 27392 ‘

August 1977

Copyright © by Philips Data Systems B.V., 1977
All rights strictly reserved. Reproduction or issue to

third parties in any form whatever is not permitted
without written authority from the publisher.

Printed in The Netherlands

11

Preface

This Volume provides a description of the Assembly Language, Disc Processors
and Utility programs for the P800M series computers with disc, paper tape,
magnetic tape and cassette tape peripherals. Information is also given on the
Memory Management Unit MMU which allows to extend the memory handling
over 32k up to 128k 16-bit words.

This manual has been written for experienced programmers.

Each item is described in a separate part to allow for easy reference.

Great care has been taken to ensure that the information contained in this
manual is accurate and complete. However, should any errors or omissions be
discovered, or should any user wish to make a suggestion for improving this
handbook. he is invited to write his comments on the sheet provided at the end
of the book and send it to:

SSS-DOC

at the address on the opposite page.

i1

Table of Contents

Preface o o o 0 i e e e e e e e e e 111
Glossaryof terms IX
PART1 ASSEMBLY LANGUAGE 1-1
Introductiono .o 1-3
Syntax descriptiono 1-5
Chapter 1 Format of source statements. e e e e 1-7
Labelfieldo 1-7
Operation fieldo 19
Operandfield. 1-10
Comment field oo 1-13
Addressingmodes Lo Lo 1-14
Chapter 2 Functional operation of instructions 1-17
Load and Store instructions 1-17
Arithmetic instructions 1-17
Logical instructionso 1-17
Character handling instructions 1-17
Branch instructions Lo L. 1-18
Shift instructions. 120
Control instructionso 1-20
[/Oinstructionso 1-21
External transfer instructions 1-21
Move table instructions. oL 1-21-
Chapter 3 Assembly directives. 1-23
Program framework 1-24
IDENT o e 1-25
END e e 1-26
Linkagecontrol 1-27
ENTRY o o e 1-28
EXTRN e 1-29
COMN. e e e s 1-30
Assembly control Lo o 0oL 1-32
IFT o e e 1-33
IFF o o e e e e e 1-33
XIF . . . o o oo o e 1-33
STAB e 1-34

RORG. e 1-35
Value definition L oo oL Lo 1-36
DATA e e 1-36
EQU. e e 1-38
Area reservation. oo oo oo oo 1-39
RES. oo 1139
Listing control oL oL . . 140
EJECT. 140
NLIST. o o o o oo 1-40
LIST. o o oo e 1-40
Symbol generation. Lo 1-41
FORM. o o s 1-41
XFORM oL 1-45
GEN.o e 1-46
List of predefined symbols 1-48
Chapter 4 Programming considerations 149
Stand Alone or Monitor controlled programming. 1-49
Interrupt system Lo ... 149
System stack oL ..o ... 150
Userstack00 ... 150
[JOProcessor.« . o o oo 1-52
Memory Management Unit MMU 154
Layout of segment tableword 1-55
Memory Protect. 0oL Lo Lo 1-55
Trapaction.o 1-56
Simulation routine L. L. oL o 1-56
Adaptation of P855M software to PBOOM software 1-56
Use of the RTN instruction 1-57
PART2 ASSEMBLER. 2-1
Introduction oL oL oL Lo 2-3
Chapter1 Imput 2-5
Source Moduleso Lo L oL 2-5
ASM control command. Lo 2-5
Chapter 2 Processing. 2-7

VI

Chapter 3 Output 29

Object modules - -o 29
Assembly listing L. 29
Error representation on the listing 2-9
Symboltableo 2-10
Chapter 4 Error Messages 2-11
PART 3 LINKAGEEDITOR. 3-1
Introduction Lo Lo oo 33
Chapter1 Imput 3-5
Temporary objectfile 35
User library. Lo 35
System library.o Lo 3-5
LKE Control command. 3-5
Chapter 2 Processing. 3-7
Chapter3 OQutput 39
Load Module o000 39
Error messages oo o o0 3-10
Listingand Map.o 3-11
PART 4 OVERLAY LINKAGE EDITOR 4-1
Introductiono Lo 4-3
Chapter 1 Overlay Technique 4-5
Chapter 2 Programming Considerations 4-7
Chapter 3 Processing the inputfile 49
Segmented Programs.o 4-9
Processing o e 4-10
Processing of Commons 4-11
LoadModuleo oo 4-11
Chapter 4 Output of Overlay Linkage Editor 4-13
Load Module o 4-13
Map and Symbol Table. 4-14
Error Messages« . « . . .t oo e e e e 4-16
Fatalerrors.o 4-16
Nonfatalerrors. 4-17

PARTS5 LINEEDITOR
Introduction

Chapter 1 Processing.
Control messages

Chapter 2 Error Messages
PART 6 DEBUGGING PACKAGE
Introduction L.

Chapter 1 Processing.
Input/Output

Chapter2 Commands
Parameter syntax

PART 7 ROM Image Generator.
Chapter 1 General Principles
Chapter 2 Operation.
Chapter 3 Control Commands.
PART 8 UTILITY PROGRAMS
Chapter1 Loaders.
Chapter 2 Dump program.
APPENDICES Coe

Appendix A Filecodes

Appendix B Non-ASCII format on paper tape. . . .

Appendix C Objectcode

Appendix D ASCIlcode

VIII

5-1

5-3

5-5

5-9

6-1

6-3

6-5

6-6

6-7

7-1

7-5

7-9

7-11

8-1

83

8-5

A-1

A-3

B-1

C-1

D-1

Glossary of terms

Absolute addressing

Assembler

Bootstrap
Breakpoint
Character
Cluster
Common

blank common

labeled common

Debugging Package

Directive

Effective
memory address

Entry point

External reference

File code

addressing specific locations in memory (see also
relocatable addressing)

a system program which translates programs
written in Assembly Language into binary object
code

a program provided for initial loading of the
system

address at which execution of program stops to
allow further debugging

eight bits, representing an integer, letter or other
data item

a set of data in object code

an area to which external references can be made
from one or more modules

a predefined external reference which can be used
in several modules

a processor which allows the programmer to insert
breakpoints in a load module and call debugging
functions before execution of a program

an instruction used for providing a framework for a
program or for guiding the assembly process

address in memory where the actual information
can be found

a label to which an external reference is made

a reference to an entry point in another program or
module

one or two hexadecimal digits associated with an
1/0 device

Identifier

Internal symbol

IPL

Label

Line Editor

Linkage Editor

Load Module

Location counter

MMU

Mnemonic

Module

Monitor

Object code

Operand

a character or a combination of characters used to
label an instruction or a value which is to be
referred to by other instructions

identifier in a module

Initial Program Loader. A program to load the
monitor

identifier of max. six characters long, the first
always being a letter

a processor which handles the additions and
deletions in source files or user data files

a processor used to link independent object
modules before execution

program output by the Linkage Editor containing
no external references

counter used to assign a relative or absolute
address to program elements

Memory Management Unit

abbreviation for an instruction, as used in the
operation code field of a source statement, to
indicate a machine instruction or directive

a part of a program, enclosed by an IDENT and
END directive, which can be treated independently
of the rest of the program

a system program which supervises the loading,
processing and execution of user programs, starts
and supervises the operation of processors and
initialises I/O operations

program as translated by a language translator and
suitable to be input to the Linkage Editor

an expression indicating the address, value or
register to be operated upon by the machine
instruction

Overlay Linkage
Editor

Pass

Real Time Clock

Relocatable addressing

Source statement

Symbol

a processor used to link independent object modules
and produce a segmented program

one program run

a mechanism by means of which the amount of
computer time allocated to a program is measured
and a signal is given when that period of time has
ended

addressing in relation to the beginning of a
program, not to specific locations in memory. The
relocation of the addresses is then done by the
machine

one line in a source program

an identifier, used as an address value in the
operand field of other instructions

X1

PART 1

ASSEMBLY LANGUAGE

Ihtroduction

This part contains a description of the Assembly Language. In this description it is
made clear how a programmer can write his programs using the instructions of the
P800M Instruction Set as well as the directives which guide the assembly process
when the program is input to the Assembler.

Programs for the P8BOOM computers are written in a symbolic language closely
related to the machine code. Each statement (or line) of the program relates to a
single machine instruction or to a data item to be taken into account by an
instruction.

To write programs in the Assembly Language, the user should be familiar with
the syntax of the instructions, which are divided in the following main groups:
Load and store instructions

Arithmetic instructions

Logical instructions

Character handling instructions

Branch instructions

Shift instructions

Control instructions

Input/Output instructions

External transfer instructions

Move table instructions

Floating Point Processor instructions.

Each module of a program consists of a number of characters grouped into
lines and each statement in a module is made up of the following characters:
Letters: A to Z inclusive

Digits: 0 to 9 inclusive

Delimiters: + plus
— minus
asterisk
equal
apostrophe
comma
blank
slash
left parenthesis
) right parenthesis
period
colon

I ¥

~ ~

Location counter

The Assembler maintains a location counter which is a software counter used
to assign a relative or absolute memory address to program elements. The
location counter starts with a relative value equal to zero, or it starts at an
absolute address defined by the AORG directive, at the beginning of an
assembly. The value of the counter is incremented by 2 or a multiple of 2
depending on the kind of instruction given.

The current value of the location counter is referred to by an x in the operand
field (see below). In absolute program sections x has an absolute value. In that
case the value is incremented in the normal way and the value may be changed
by a RES or RORG directive.

The location counter may take neither a negative relative value nor an odd
value.

Symbols

A symbol is a character or a string of characters used to represent addresses or
values. Symbols may appear in the label field as well as in the operand field of
a statement.

Their syntax is the same as for the label (see under label field). Some symbols
are predefined and have a special meaning for the Assembler e.g. * indicates
the current value of the location counter, P is the instruction counter etc.

Syntax description

The following symbols are used to define the syntax of the P852M Assembly

Language.

< > to enclose syntactic items

| the vertical stroke has the meaning of or

== is composed of
1 the syntactic items between these brackets may be omitted
]

[
L

— space

select one of the items between these brackets

The following list contains the definition of all items used.

<statement >

<label >

<operation code >

<operand >

< comments >
<identifier >

< mnemonic >
<S>
(<cnd>)

< numerical
condition value >
< condition
mnemonic >

<L>
*
<directive >

[<label > <operation

code >[<operand >][<com-

ments > | [* <comments > |

<identifier >

<mnemonic >[S|(<cnd >)|L]

[*] <directive >
[+]|—]<term>[+]|—]<-term >
[+]|—=]<term>

< characters > |x < characters >

<letter >| <identifier > <letter > |
<identifier > <digit >| <identifier >
<letters representing operation code >
<store indicator >

<numerical condition value >|<condition
mnemonic >

0]112|34|56|7

Z|PINJO|E|G|LIAJUINA]|
NRINZINP|INENGINL|NN]|

< load indicator >

indirection

<IDENT, END etc.> see chapter on
directives

<DATA defined
hexa constant>
<module name >
<symbol >

< predefined expression >
<entry point name >
<external >
<common-field
definition list >

<common field definition>

<common field name >
<common field length>
<internal symbol list >

<internal symbol >
<field definition>

<field length definition >

< = field value definition>
< field value definition >
<field number>

<term>

< constant >

<decimal constant>

< hexadecimal constant>
<character constant>
<letter >

<digit>

<delimiter >
<integer >

1-6

Il o

<see DATA directive >
<symbol >
<characters
value >

< max. of two defined symbols >

< identifier within reference module >
<identifier defined in other module >

representing address or

<commen field definition >, <common field
definition >
<common field name>[<common field
length >

<identifier >

predefined (absolute) expression
<internal symbol >, <internal

symbol >
<identifier >

< field length definition>| | =|:]<field value
definition >

< number of bits >

<value to be placed in field >

< address of word >

<decimal integer >

< constant > | < symbol >

< decimal constant >| < hexadecimal
constant > | < character constant >

<digit>| <integer >

< hexadecimal integer >

<letter >| <digit >| <delimeter >
A|B|C|D|E|F|GIH|I|J|K|L|M]|
N[O|P|QIRIS|T|UIVIW[X|Y|Z
0]1|2/3]4|5/6/7|8|9

=l =L/ 1O

< number >

1 Format of source statements

A source module consists of a sequence of statements. The Assembler
interprets each line as it is presented.
Statements can be divided in the following fields:

— label field

— operation field
— operand field
— comments field

<statement > :: = [<label >} <operation
code > [<operand >][<comments >][<sequence nr>]
* <comments >]

Each field has to be separated from the other by one (or more) blank
character(s). Blanks may not appear in the fields themselves except when
specified in a character constant or in a comments field.

Instead of blanks a backslash may be used for separation (see 1-13). One or
more blanks at the beginning of a statement indicate that there is no label field.
If there are more than ten blanks after the operation field all following
characters are considered to be belonging to the comments field.

An x (asterisk) at the beginning of a statement identifies that line as a
comments line.

LABEL FIELD

<label>:: = <identifier >
<identifier>:: =
<letter >| <identifier > <letter >| <identifier > <digit >| <identifier >

Labels (or identifiers) in a module are used for reference purpose to other
statements in a module.

The Assembler assigns, in most cases, to each label a word address value which
is the numerical equivalent (absolute or relocatable) of the label.

The maximum number of characters in a label recognised by the Assembler is
six. The first of those must always be a letter. A label, however, may contain
more than six characters but the additional characters will not be taken into
account. If the label has already been allocated to another statement an error
message is output.

Period signs in a label are not significant, e.g.

Lesst 166 cls

LI O B LI AN U O I B | FTTTTTTTTTT TTTTTTTT TTTTTTTT
TTTTTTIT LINLINL L N N rTr1r1TT7TTr rTIorT TTTTTTTT TT rrrTT
TTTTTTT LIS L L N N O O FTTTTTTTTTT TTTTTTTT TT TTTTT
rrrrrrT LANLINNL N O TTTTTTT T TrTT FrTTTTTTT TT TTTTT
TTTTTTT LNL L L L N N A N N O A N | TrTTrrrrrrorrT TTTTTTTT TT TTTTT
TTTTTTT LN UL UL N O N NN O O Y N O O B rTTr T T T T T TTT TTTTTTTT TT TTT
TTrTTTTT TTTT T T T T T T T T T T T T TP T T T T T T T T T T T T T T T T T T TT] TTTTTTT T T T1T TTTTTTTT TT TTTTT
rrrrrrT L L L L O B B TTTTTTTTTTT TTTTTTTT TT TTTTT
TTTTTTT LN N N O D O O | TrTT T TTITr rTorTTd TrTTTTT1TTT TT TTTTT
TTTTrTTT LIS L L L N N N N N O O O I TrTTTTT T 17T TTTT1TT7TTTT TT TTTTT
T TrTTrTT rm1rrr1rrrrrrrrrrr1r 7T rrr T r T T T T T T T T I T T T T 11T rrrr1rrrrr1r 11T rrTTrrTrTT T TTT
rTTrrrTT TTTTTT T T T T T T T T T T T P T T T T T T T T T T T T T T T T T 1T TTTTTTTTTTT TTTTTTTT TT TTTTT
TTTTTTT LINL IR L Y N O O I IO rTrTr1rrrrroT TrTTrTTTTT TT “ TTTTT
rTT1TTTTrT LI N I O TTTTTTTTTTT T T T T T7TT TTTTTTTT
TTTTTTT TTTTTTTTT T T T T T T T T T I TTTTTTTTTTT TTTTTTTT T “ TTTTT
rTrTTrTTT LN L rmr7rrrr17To17 TT T TTTTT T __ TTTTT
TT 1T rrrrT LI A T O I O IO O B B TTTTTTTTTTT rTrrorTTT TT “ TTTTT
T T T T LA R L N B B S N A B B B B N B B B B B B e M S e B TT T T T T T T T 1T TT T T T 17T T “ T 17T
L e e LIS S I B B B R B B S St B B I B B S B B H S S S B S S A B TT T T T T T T 17T TT T T T 1T 177 T “ T T T 17T
L L LA LANLANNL AL N N N S B N O D D B B B B D N R B B R D N O T T 1u4>-o_r_,_m‘_..< TTTT J_vZQJ TT _“ IR
T T T T T 77 LI I A N N N A N D O O O S D D B B B TT T T Ty T Ty T T 7 T T 1gigrr 7T __ TT T 17T
LANLENEL N B B A rryrrr1rrr1rr1rJ7J71r1rrr1rr 111 rr 11T 1T 1T T T 1T T 117 TTrTrT _MJ;_,_.—_.‘; TTTTT _d_n_t LI " L
TT T T T T LI A A I N D B B B T T AT g T IyT3 Ty T 7 T T IR L __ﬂ_“.__s_o_z
LR B N | LANNL I L N N N A N N N N D N N O O B | TTTTTTTT _N_.e_t TT T TRl T 1 N rrrrT
T T 1T 11T rrrrrrrr1rr1rr1rr T T T TSTST T TgTa'y" _Vs_kda_ T .Q.m_&_u_!_ﬂ_ 20.*.(TTTT _._qu_n-q T ﬂa_ TT 1T
LI e e LA N B S B B S N O D O B D B B _._________.-______:S_m~_“_“:._c_o_
08 LI E Y T Tog T Tos T Tov T T Tozeifer T Tor ToT ‘
uoneaynuap) siwawwoo | - puesado uonesado " 1eqe)
IWNVHOOH PErAT S Ty ot a7 74 .W\K\i.\x\u\ W31804d
—— 40" 39vd viva

swayshs eyep

—_—

SdiTiHd

1-8

IIIIﬁ

Ll
lllll|||lll|ll'll||III!IIIIIIIIIIIIlIIIIIIIIIIIIllIIIIlllIIIlIIIlIIIIII

5122 991 1sem

L.A.B.E.L. has the same meaning as LABEL

The value of a label is normally regarded as relocatable, except when:

— an absolute address is equated by an EQU directive
— the label appears in an absolute program section (defined by the AORG

directive and which is not equated by an EQU directive to a label previously
defined as relocatable).

OPERATION FIELD

<operation code > :: = <mnemonic >[S|(<cnd >)|L][*]<assembly
directive >

where:

< mnemonic >

The operation field normally contains the mnemonic of a standard instruction.
It is possible, however, to generate one’s own instruction mnemonic by means

of the FORM, XFORM and GEN directives.

S
Allowed after the mnemonic of certain register to register and memory

reference instructions. It indicates that the result of the operation must be
stored in a memory word (bit 15 of the instruction is set to 1). In fact, S has to
be considered as a part of the instruction mnemonic.

e.g. CIR and CIRS instructions are to be considered as two different

instructions.

NOTE: 1t is allowed to have the S preceded by a period sign though the
Assembler does not take this sign into account.
e.g. ADS. = ADS

(<end >):: = <numerical condition value > | < condition mnemonic >
<numerical condition value>: = 0/1/..... /7

< condition
mnemonic > :: = Z|P|N|O|E|G]L|A|RJUNA|NR|NZ|NP|NE|NG|NL|NN

This indicator specifies the condition under which a conditional branch
instruction is to be performed. The table belows shows how in the Extended
Assembler the conditional mnemonics and numerial condition values may be

used.

1-9

COND. REG
CONTENTS GENERAL ARITHM.
0) (Z) ZERO
1 (1) (P) POS.
2 @) (N) NEG.
3 3) (O) OVERFL.
NOT - CONDITION
£0 @) (NZ) NOT ZERO
#1 (5) (NP) NOT POS.
#2 (6) (NN) NOT NEG.
#3 (7 UNCONDITIONAL

L

Allowed after the instruction mnemonic of a constant instruction. It specifies
that the operand is contained in 16 bits i.e. that the instruction must be

assembled as a “long” instruction.

*

Indicates the indirect addressing mode in a register to register or a memory

reference instruction.

OPERAND FIELD

The operand field may contain an address expression, a register expression or
constants associated with the current machine instruction or assembly directive

or a combination of those.

The structure and meaning of the operand depends on the type of instruction

and directive and is explained below.

All operand expressions must be separated by a comma.

Expression
<expression>: = [+ | =]<term>[|+ | —|<term>[| + | —|<term>T]
<term>: = <constant>|<symbol >

NOTE: =« is considered to be a symbol.

An expression may not refer to more than 2 symbols and may not refer to
more than one register name. In the latter case it may not contain any other

term.

1-10

(<CND>)

COMPARE 1/0
(E) EQUAL (A) ACCEPTED
(G) GREATER (R) REFUSED
(L) LESS —
— (U) UNKNOWN
(NE) NOT EQUAL (NA) NOT ACCEPTED
(NG) NOT GREATER (NR) NOT REFUSED
(NL) NOT LESS —

Address expression

The address specified in a memory reference instruction can be either absolute
or relocatable.

An absolute address is the actual address in memory where the information the
user needs can be found.

A relocatable address is relative to the beginning of the program in which it
appears.

The address expression may contain any of the following terms or a
combination of them:

* asterisk, which is a predefined expression representing the
current value of the location counter. This counter is
incremented by two or a multiple of two depending on
the length of the instruction.

symbol used to refer to an instruction or data word with the
same identifier in its label field. The Assembler will
convert the symbol to a relative address.

displacement value which can be attached to * or <symbol> to indicate a
word not labeled by an identifier.

Predefined expression

A predefined expression is an expression consisting of not more than two
symbols, each of which is defined i.e. has been assigned a value. Some symbols
are implicitely predefined in the Assembler (see page 1-48).

An expression may contain only one external reference. The remainder, if any,
of such an expression must have a predefined absolute value. The combination
of an external reference and a predefined absolute value may only be used for
specifying the value of a 16-bit field. The table below shows the result of a
combination of positive and negative absolute or relocatable values:

Ist term
+ R —R + A — A
2nd term
+ R E A R R
—R A E E E
+ A R E A A
—A R E A A
where:

R = relocatable
A = absolute
E = erroneous

Register expression
Register expressions are regarded as predefined expressions and consist of one
or two characters. The register expressions recognised by the Assembler are:

P P-register or instruction counter

Al...A14 Registers 1 to 14 (general purpose registers)
A15 Register 15 (stack pointer)

Constants

A variety of constant types may be specified in the operand of an instruction
or directive.

<constant>:: = <decimal constant>| <hexadecimal constant> | <character
constant >

Decimal constants
<decimal constant>:: = <digit>|<integer >

The decimal constant is a digit or integer contained in an 8-bit character or 16-
bit word whose value may range from 0 to 32767.

Hexadecimal constants
<hexadecimal constant>:: = / <hexa integer >|X’ <hexa integer >’

The hexadecimal constant is considered to be hexadecimal value or bit string in
the range from 0 to /FFFF.

Character constants
<character constant >:: = '<character >[<character > |

A character constant is composed of a character string enclosed in single
quotation marks. The string is composed of the characters described in the
character set on page 1-3.

A character constant can be used with a machine instruction only if the
constant consists of either one character (short constant) or two characters
(long constant). Longer strings can be specified in a DATA directive. A single
quote mark (") used as a character is specified by two consecutive single quote
marks.

COMMENT FIELD

Comments are only for the programmer’s benefit. They are included in the
assembly listing but not in the generated object program.

A line is considered to be a comment line when the first 10 characters of that
line are blanks or when the line starts with an asterisk.

INPUT OF SOURCE STATEMENTS AND CORRECTIONS

The user may type in the statements and corrections from the operator’s
typewriter. He may do so by counting the number of characters to obtain a
neat output on the listing device.

This procedure is rather cumbersome when many statements have to be typed
in. An easier way of input from the typewriter is by typing a backlash between
the various parts of the statement.

Example:
1st col 10th col 19th col 40th col
label . opcode v, operand .. comments

may be typed as follows:
label\opcode\operand \comments

without having to count for the first column of each field.

1-13

Example:

1st col 10th col 19th col
label s opcode . operand
may be typed as follows:

label\opcode\operand\comments

40th col
- comments

without having to count for the first column of each field.

Example:
DATAF\LDK\A4,4
\ABL(7)\HALT
DEVUN\LDK\A4,5
\ABL(7\HALT

ADDIT\LDK\A1,00SET INDEX REGISTER FOR BUFFER.
\LDK\A3,/00FF\LOGICAL CONSTANT INTO A3

ADDRESSING MODES

In Volume Il we see how addressing takes place from a hardware point of
view. The condition an instruction must fulfil to meet the requirements of the
Assembler is explained on the preceding pages. Specific examples, with source
statements and explanation concerning the arithmetic instructions AD and
ADR are given to show the operation within the CPU.

See for the hardware operation of those instruction Volume Il. The order in
which the examples are given is in accordance with the description on those

pages.

Direct addressing
AD A1,LABEL

ADS A1 LABEL

Indexed addressing
AD A2LABEL,A10

1-14

The contents of the memory location with
symbolic address LABEL are added to the
contents of register Al. The result is placed in Al.

The contents of the memory location with address
LABEL are added to the contents of register Al.
The result is stored in LABEL.

The contents of register A10 are added to the
address LABEL. The result gives an address
whose contents are added to the contents of A2.
The result of the latter operation is placed in A2.

ADS A2,LABEL,A10

Indirect addressing
ADx A2,LABEL

ADSx A2,LABEL

Index Indirect addressing
ADx A2,LABEL,A10

ADSx A2,LABEL,A10

The contents of register A10 are added to the
address LABEL. The result gives an address
whose contents are added to the contents of A2.
The result of the latter operation is stored in the
address: LABEL + contents of A10.

The contents of LABEL point to an address
whose contents are added to the contents of
register A2. The result is placed in A2.

The contents of LABEL point to an address
whose contents are added to the contents of
register A2. The result is placed in the contents of
LABEL.

LABEL is added to the contents of register A10.
The result points to an address whose contents
are added to the contents of register A2. The
result hereof is placed in register A2.

LABEL is added to the contents of register A10.
The result points to an address whose contents
are added to the contents of register A2. The
result hereof is placed in the address obtained of
A10.

Register to Register operation

ADR A1,A2

Register addressing
ADRx A1,A2

ADRS A1,A2

The contents of A2 are added to the contents of
A1. The result is placed in A1.

The contents of the address pointed to by A2 are
added to the contents of register A1. The result is
placed in A1.

The contents of the address pointed to by A2 are
added to the contents of Al. The result is stored
in the address pointed to by A2.

2 Functional operation of instructions

LOAD AND STORE INSTRUCTIONS

Load instructions

Before the programmer can perform an operation on the contents of a memory
location or a register its contents must be placed in one of the registers A1 through
A15, an operation which is performed by the load instructions. The contents of any
memory location or any register are loaded into any register or memory location
where the operation will take place.

The contents of a number of memory locations may be loaded in the same number
of consecutive registers by means of a multiple load instruction. The first register
to be loaded always is register Al.

When working in system mode on a P857M with MMU board (see also page 1-54)
also locations beyond 32k can be loaded as their addressing is taken care of by the
MMU.

Store instructions

Companion to the load instructions mentioned above are the store instructions
which store the contents of a register, or a number of consecutive registers,
containing the result of an operation, into a register or into a memory location or
in a number of memory locations.

ARITHMETIC INSTRUCTIONS

Arithmetic instructions perform the normal arithmetic functions such as add,
subtract, multiply and divide. The instruction operand operates upon the contents
of the specified instruction.

This type of instruction includes also the double add and double subtract
instructions where operations take place on the contents of two consecutive
memory addresses and registers Al and A2.

LOGICAL INSTRUCTIONS

Instructions described under this heading are called logical instructions because
they operate on binary information according to the rules of logic. The first
operand which may be a memory location, a register (R1 or R3) or a constant is
compared with the second operand, register R2. The result is placed in a register
or possibly in memory. In the instruction set each logical instruction is given a
description in which way the contents of a memory locations is ANDed or ORed.

CHARACTER HANDLING INSTRUCTIONS

Character handling instructions operate on a character level. Characters may be
exchanged, compared or 8 bits of a constant may be placed in 8 bits of a register.

1-17

BRANCH INSTRUCTIONS

These instructions cause a branch to an address in memory either when a
certain condition is fulfilled or unconditionally.

In branch instructions on condition the instruction mnemonic is followed by a
number ranging from 1 thru 6, enclosed in brackets. When the number is (7) or
omitted, the branch is unconditionally.

These numbers are compared with the contents of the condition register set by
the previous instruction.

The condition number has the following meanings:

(0) branch if CR =0 (4) branch if CR # 0
(1) =1 5) # 1
(2) =2 (6) # 2
3) =3 (7) unconditional branch
Example:

LDK A2,4
LABEL SUK A2,1

RB(4) LABEL

The Extended Assembler allows to use, instead of a number. a condition
mnemonic e.g. Z, E, A (see page 1-10).
Unconditional branches are made by the following instructions:

— absolute branch instruction or relative branch instruction without a
condition indicator or when (7) is specified.

— CF, RTN, EX instructions.

Long format absolute instructions permit to branch, forward as well as

backwards, to any address in the program. Short format absolute branch

instruction may only branch to locations /0000 to /00FE. Relative forward and

relative backward instructions may not skip backwards more than 127

locations and 128 locations forward.

The Assembler gives an error indication if the permissible branch range is

exceeded.

The address to which control is to pass may be indicated in various ways:

1 By means of a symbolic address expression
ABL(3) LABEL

1-18

e —

2 By an absolute address held in a register

ABR(7) A5

3 By using a constant to indicate an absolute memory address (short
constant)
AB /84

4 By means of a displacement value added to or subtracted from the

instruction counter value (RB and RF instructions only). This
displacement value is computed by the Assembler from an address
expression used in the operand and may not exceed more than 128 words
forward or 127 backwards.

RB(0) ZERO

Another group of branch instructions are the Call Function and Return from
Function instructions. The Call Function instruction provides a link to a
subroutine by branching to the first instruction of the subroutine. To be able to
resume the execution of the main program after the subroutine has been
executed the contents of the P-register and the Program Status Word are
stored in the stack. When the last instruction of the subroutine (RTN) is
executed the contents of P and PSW are restored.

A special group within the branch instructions is formed by the instructions
EX, EXK and EXR.

These instructions allow to address a memory location of which the contents is
the binary representation of another instruction. The latter instruction is
executed before the program continues with the next instruction in sequence.

Example:

LDKL A3,CIO
LDKL A4,SST

CIO ClO ATLTY

EXRx A4 EXECUTE SST
RB(4) %2
EXRx* A3 EXECUTE CIO
SST SST AT.TY
RB(4) 2

1-19

The Execute instruction may not refer to other EX, EXK or EXR instruction, or to
Call Function, RTN or double format instructions.

SHIFT INSTRUCTIONS

Shift instructions operate on a bit level. These instructions allow to rotate the
contents of one of the registers A1 thru A7 n positions in the direction and manner
specified in the instruction. Double shift instructions permit to operate on two
registers.

CONTROL INSTRUCTIONS

These instructions perform the control of the program by allowing the program to
be interrupted or not or to reset an internal interrupt. Except for the LKM
instruction, control instructions should only be used in Stand Alone programming.

INH and ENB are two companion instructions. The program part between these
instructions is not interrupted as INH inhibits all interrupts. ENB sets the machine
status to permit interrupt.

Example:

IDENT TEST

OUT EQU *
RORG OUT + /600
START HLT
INH
LDK A5,0
LDKL A11,BUF
LDK A2,0
AGAIN CIO A2,1,/30 program inhibited
RB(NA) AGAIN
LC A3,BUFPT,A5
ENB

The RIT instruction is used to reset an internal interrupt which was previously
set by an interrupt from the control panel, power failure/automatic restart,
real-time clock or by a program error.
The programmer may specified a 5-bit hexadecimal value in the operand of this
instruction to clear specifiec interrupts.

INTRTC RIT /1B Reset the real-time clock interrupt

1-20

I70 INSTRUCTIONS

I/0 instructions handle the data transfer between the CPU and peripherals, the
operation of control units for these peripherals and status control.

In monitor controlled programs the I/O functions, initiated by these instructions,
are taken over by a general I/O routine which is called each time a LKM
instruction followed by a DATA directive is used.

The user need therefore not to write his own I/O routines. When the programmer
is to write a Stand Alone program he has to write his own I/O routines. Since there
is no memory protection option, except when working with the Memory
Management Unit MMU, the programmer must be careful not to overwrite parts
of a program already in memory. Two instructions, RER and WER, may be used
to address an external register. The function of these instructions is described on
page 1-52.

EXTERNAL TRANSFER INSTRUCTIONS

These instructions may only be used in system mode. The instructions RER and
WER may be used to address an external register. The function of these
instructions is described on page 1-53.

The remainder of the instructions in this group are instructions involving the
operation of the MMU in the P857M.

They permit to load the 16 registers on the MMU board with information
pertaining to the max. 16 pages into which a program can be divided.

Example:
SEGTAB DATA /0000
DATA /0400

DATA /3000

TL SEGTAB

A table store instruction writes the contents of these registers on the MMU, which
are updated during the program execution, back to the specified reserved
locations.

MOVE TABLE INSTRUCTIONS
The instructions under this heading are only accepted on the P857M.
They allow to copy a string of consecutive memory locations into another area, or

when working in system mode with MMU, a string of consecutive memory
locations from a user area to a system area and vice versa.

1-21

3 Assembly directives

Directives are used to provide a framework for a program and to guide the
assembly process. The directives are written in the program and are printed on
the assembly listing if the listing option is specified in the ASM CCI command
(see page 2-5).

The table below gives a survey of which directives are accepted by the
Assembler.

Directive| Meaning page

IDENT | Program identification | 1-25

END End of assembly 1-26

ENTRY | Define entry point name| 1-28

EXTRN | Define external 1-29
references

COMN | Define common blocks | 1-30

STAB Define internal symbol | 1-34
table

AORG* | Assign absolute origin | 1-35
RORG | Assign relative origin 1-35

IFF If false 1-33
IFT If true 1-33
XIF End of condition 1-33
DATA | Data generation 1-36
EQU Equate symbol to value | 1-38
RES Reserve memory area 1-39
EJECT | Continue listing on new | 1-40
page

LIST Resume listing output 1-40
NLIST | Suspend listing output | 1-40

FORM | Format definition 1-41
XFORM | Extension of FORM 1-45
directive

GEN Generation directive 1-46

* The user should be aware of the fact that the Disc Assembler accepts absolute
addresses, but that the Disc Linkage Editor does not and will output an error message
ABS.ADR.

The directives can be divided in the following groups according to their
function:

— Program framework : IDENT, END

— Linkage control : ENTRY, EXTRN, COMN

— Assembly control . IFT, IFF, XIF, STAB, AORG, RORG
— Value definition : EQU, DATA

— Area reservation : RES

— Listing control : NLIST, LIST, EJECT

— Symbol generation : FORM, XFORM, GEN

PROGRAM FRAMEWORK

The directives IDENT and END form respectively the first and last statements
in the module. They are mandatory. The module punched on tape must be
followed by :EOS or :EOF.

The IDENT directive is used for identification purposes and the END directive

generates the END cluster after which the assembly process is stopped and a
symbol table is printed.

1-24

IDENT program IDENTification IDENT

The IDENT directive specifies the name to be given to the object module
output by the Assembler. It is used for identification purposes in selective
loading or updating (see parts on Linkage Editor and Line Editor). This
directive must always be present and must be the first statement in a source module.

Syntax
IDENT L <module name >
where:

<module name> A symbol which is specified according to the rules for a
label.

END

END of assembly END

This directive must be the last statement in a module and terminates the
assembly process by punching an :EOS mark.

Syntax

[<label >]_END_[<predefined expression>1[, <symbol>]

where:

<label >

< predefined expression >

<symbol >

The label is given a relative value equal to the length of
the relative section of the generated object program.
This iength includes the length of the optional symbol
table (see STAB directive, page 1-34).

The value is O if this module is absolute.

This expression, if present, gives the address of the
first instruction to be performed in the program
after loading.

This parameter gives an entry point name to the
internal symbol table of the generated object
program when the STAB directive has been
assembled.

The internal symbol table consists of a list of all
relocatable symbols defined and their numerical
equivalents.

LINKAGE CONTROL

Some modules which have to be grouped into one larger program contain
references to identifiers defined in other modules.

By means of the directives ENTRY and EXTRN the user is able to refer to
certain parts in other modules whereas the directive COMN allows to transfer
data among several modules either written in Assembly Language or in
FORTRAN.

By using a COMN the programmer can define one or more common blocks.
Each common block may be divided in a number of subfields of varying length,
each having a symbolic name which can be referred to directly but only in the
module in which they are declared.

COMN blocks may be labeled or blank; a COMN block is labeled if a name is
attached to it. -

The Linkage Editor allocates a space to the blank common block at the end of
the link-load or link-edit run (see Linkage Editor). This block is placed at the
end of the entire program.

Labeled commons are placed at the end of the first module that refers to it.

The ENTRY, EXTRN and COMN directjves must always follow immediately
after the IDENT directive and in this order, though it is not necessary that the
ENTRY as well as EXTRN and COMN are specified. -

So: IDENT, ENTRY, EXTRN, COMN or
IDENT, EXTRN, COMN or
IDENT, ENTRY, COMN etc.

1-27

ENTRY

define ENTRY point name

ENTRY

The ENTRY directive is used to declare entry points, i. e. labels which are
defined in the current module and used as operands of another module.

This directive, if present, must follow the directive IDENT.

Syntax

—ENTRY_ <entry point name>[,<entry point name>,

name > |

where:

..,<entry point

<entry point name> Can be referred to by an operand of an instruction in

another module. The maximum number of entry points

which can be specified in one ENTRY directive is

determined by the length of one line.

Example (see also EXTRN)

NUMBI1

NUMB2

NUMB3

1-28

IDENT
ENTRY

END

PROG
NUMBI1, NUMB2, NUMB 3

A3, LABEL

A6, REFER

A14, EOS

START

EXTRN

define EXTeRNal references EXTRN

The EXTRN directive is used to declare externals i.e. operands which are used
in the current module and defined as labels in another module.
The directive must follow ENTRY, or IDENT when the directive ENTRY is not

present.

Syntax

LEXTRNL <external name >, <external name > ..., <external name>]

where:

<external name >

Name of external reference (label in other module). The
maximum number of external names which can be
specified in one EXTRN directive is determined by the
length of one line.

Example (see also ENTRY)

IDENT
EXTRN

ASMPRO
NUMB2

A14, NUMB2

START

COMN declare COMmoN block COMN

The COMN directive facilitates communication between modules written in
Assembly Language or FORTRAN. The directive is written as follows:

Syntax
[<label >].COMN_ < common field definition list >
where:

<common field definition list>::= <common ﬁeld definition >[, < common
field definition list >

where:

<common field definition>::= <common field name>[<common field
length>1]

where:

<common field name > ::= <identifier >
<common field length > ::= <predefined absolute expression >

If the parameter <common field length> is omitted the default value
assumed by the Assembler is 1. The field length must be given in words.
Example

A COMNLFVALIL (3), FVAL2 (3), INTGV (10)

which defines a labeled common, named A, having the length

3+ 3+ 10 = 16 words.

A is defined as an external reference and common block name. Either the
common block name itself or the subfield names may be referred to in the
same module. The subfield names are then considered to be equivalent to:
<common block name > + <absolute displacement >

SO,

LD A1, FVAL2 is equivalent to LD.LA1, A + 6

1-30

and

STA2, INTGV + 18 is equivalent to ST.A2, A + 30

The displacements in this example are counted in characters.

Blank commons can only be referred to by the subfield names defined in the

operand field.

o COMNLVALL1 (3), VAL2 (4)
COMNLVAL3 (9), VAL4 (10)

These directives define a blank common of 3 + 4 + 9 + 10 = 26 words.
VAL2, for instance, may be used in symbolic expressions and is equivalent to:
<blank common “name”> + 6

More than one blank common may be specified in one module.

1-31

ASSEMBLY CONTROL

When it is neccessary to check whether a certain condition is satisfied before
assembling a number of source lines, the user may include the directives IFT,
IFF and XIF. The assembly of the IDENT — END — XIF directives are never
bypassed by IFT or IFF.

By means of the STAB directive the user may specify one or more internal
symbols which are to be used for Debugging purposes. All these symbols must
have been defined previously in the current module.

Common block names are handled as externals.

The RORG and AORG directives are used to reset the location counter to a
relocatable or absolute value indicated in the operands of those two directives.

The AORG and RORG directives are respectively used to define an absolute
module section and a relative module section. Although the AORG directive is
available in the Disc Assembler, the Disc Linkage Editor will not accept
absolute addresses. The AORG and RORG directives are only to be used for
self-contained executable programs.

The RORG directive is used to reset the location counter to a relocatable

value, indicated in the operand of this directive, after the AORG directive has
set the location counter to give absolute addresses.

1-32

IFT, IFF, XIF Conditional Assembly IFT, IFF, XIF

Those directives are only used in combination with the directive XIF to
indicate that a block of instructions is to be assembled only if a certain
condition is fulfilled. The assembly of the IDENT — END — XIF directives
are never bypassed.

IFT (IF True)
The IFT directive specifies that the Assembler has to assemble the next source

lines only if the condition stated by this directive is fulfilled.

Syntax
IFT <predefined absolute expression> = <predefined absolute
expression >

If the first parameter # second parameter the source line(s) following IFT up
to the next XIF directive are not assembled.

IFF (IF False)

Syntax
IFF . <predefined absolute expression > = < predefined absolute
expression >

If the first parameter = the second parameter the source lines following IFF
will not be assembled.

Syntax
XIFo

This directive allows all subsequent statements to be assembled until a new IFT
or IFF statement is encountered.

1-33

STAB define internal Symbol TABIle STAB

The STAB directive outputs at the end of the relocatable program section of
the generated module one or several internal symbols to be used for
Debugging purposes (internal symbol is the address given to a symbol in the
program after assembly). All symbols must have been declared previously in
the current module. .

STAB must immediately precede the END directive.

Syntax

wSTAB. <internal symbol list >

where:

<internal symbol list>:: = <internal symbol >, <internal symbol list >]

If the STAB directive does not contain a parameter in the operand field all
internal symbols of the module will be included.

The programmer may not specify entry points, external reference names or
commons. This directive is only taken into account when in the END directive the

parameter <symbol> is specified which gives the name of the internal symbol
table.

1-34

AORG Assign absolute ORiGin AORG

This directive assigns an even absolute value to the location counter. The
location counter receives that value by specifying <predefined absolute
expression >. .
From the time AORG is given and until a RORG directive is given the
location counter is incremented in the same way as if it were relative, i.e. by
increments of 2 and 4 depending on the length of the instruction. All labels in
an absolute module are given an absolute value unless they are equated to a
predefined relative value by an EQU directive.

RB and RF instructions in an absolute program cannot refer to an address in a
relocatable program section as the place from where this section will be loaded
is not known.

Syntax

—AORG . <predefined absolute expression >

RORG assign Relative ORiGin RORG

The RORG directive allows the user to specify the beginning of a relocatable
module by assigning a relative value, which must always be even, to the
location counter. Its value may never become negative. If RORG has no
operand the location counter is given the last relocatable value it has
previously received. This value is equal to the length of the relocatable module
at the time this directive is assembled.

Syntax

«RORG . | < predefined relocatable expression>]

VALUE DEFINITION

The directives DATA and EQU are used to define certain values in a module.

DATA DATA generation DATA

The DATA directive is used to assign a value to one or more words in the
module, for inclusion in the object module.

Syntax

[<label >1_DATA_ <data expression >

where:

<data expression>: = | <expression>| <character string>"]| <data
expression > |

<label > refers to a symbol in the operand field elsewhere in the

module.
<data expression> the data expression may be:

— a decimal or hexadecimal constant

— an address expression

— a character string consisting of one to thirty-two
ASCII characters enclosed by single quote marES. A
series of words is generated, of two characters each,
which are left justified. When the number of
characters is odd the rightmost character of the last
word is a space.

Example

The expression may contain a number of parameters which, in total, may
generate no more than 16 words in memory.

~DATAL'ABC,/0AOD, 1,/A, 2,'DEF

will generate the following words:

1-36

4142 'AB

4320 Co

0AO0D /0A0D

0001 1

000A /A

0002 2

4445 'DE

4620 Fo
Example

When the user wishes to make an ECB he may do so as follows:
ECB_.DATA._.1, BUF2,6,0,0, 0,

Example
DATA._—0128, + 12,/3AB,—/A, LABEL, ‘TEXT?

will generate the following:

FF80 -128

000C + 12
03AB /3AB
FFF6 —/A

<value> LABEL

5445 ‘TE
5954 XT
3A20 -

1-37

EQU EQUate symbol to value EQU

Identifiers are normally defined by being assigned memory values as they
appear in the label field of an instruction. The EQU directive may be used to
define an indentifier in a direct manner by assigning to it the value of an
expression in the operand field. The symbol in the label field is made equivalent
to the value in that operand field. This value may be absolute or relocatable.

A symbol, provided it differs from standard mnemonics and FORM-defined
mnemonics, may be used as an operation mnemonic but may not be followed
by an operand. The Assembler generates one code word each time this
mnemonic appears in the operand field.

Syntax

<label > _EQUw < predefined expression >

Example
CT— EQU._/41C4 CT may now be used anywhere in the program
to represent the value /41C4.
CT
LDKL_A1,CT
Example

VAL_ EQU._10

LDK . A1, VAL

Example

LAB o EQU . LAB receives the value of the location counter.
(equal to LAB RES 0)

Example Each time the Assembler encounters C:1 or REG:3

C:1_EQU..25 they are replaced by 25 and A3 respectively.

REG:3_EQU.__A3 LDK A1,C.1 — = LDK A1, 25

LDK REG: 3,1 — = LDK A3, 1
LDK REG: 3,C.1 - = LDK A3, 25

1-38

AREA RESERVATION

The directive RES can be used to skip over an area in memory. The RES
directive saves a memory area of a given length, specified in the operand,
advancing the location counter by twice the number of words specified.

RES \ REServe memory area RES

The RES directive is used to reserve a number of memory words. The
programmer may specify this number in the parameter. The location counter is
incremented or decremented depending on the positive or negative value of
that parameter. If positive, a memory area of the specified value is reserved. If
negative, a memory area of the specified size before the place identified by
<label >.

The value of the latter is not changed but the location counter is reset to a
lower value by subtracting twice the value specified.

[<label >1.RES.. < predefined absolute expression >
where:

<label > receives the address of the first word of
the reserved area.

< predefined absolute expression> specifies the length of the area to be
reserved.

If <predefined absolute expression> is 0 the location counter is not updated
and, if <label> is specified, the statement is equivalent to

<label > I_JEQU_I*

Examples:
RES._4 Reserve 4 words
LAB1_. RES._.-2 Reserve 2 words before LAB1
INS_. RES_.0 INS receives the value of the location counter.

Example of stack reservation.
STACK RES 4 STACK —
BASE EQU %-2

BASE %-2 —

*x —>

LISTING CONTROL

The Assembler normally produces an output listing for each assembly. By
means of the directives EJECT, NLIST and LIST the programmer may
determine which parts of the modules do not need to be listed.

EJECT Continue listing on new page EJECT

This directive causes the remainder of the current page of the line printer
paper to be left blank and the listing to be continued at the top of next page.

Syntax
EJECT_

NLIST Suspend listing NLIST

The NLIST directive causes the Assembler listing to be suspended from the
point where this directive is given until either the END directive or a LIST
directive.

Lines which contain errors will continue to be printed during this phase.

Syntax
NLISTL

LIST Resume listing LIST

The LIST directive causes the Assembler to resume the listing aftér it has been
suspended by a NLIST directive.

Syntax
 S— L ! S’rl_}

1-40

SYMBOL GENERATION

Three directives allow the user to make a number of special instructions for a
specific purpose or program, namely FORM, XFORM and GEN. In the FORM
directive the user may define the bit configuration and the mnemonic of the
special instruction.

If two FORM-defined instructions are to be specified which differ only in the
contents of certain fields the programmer may use the XFORM directive.

The GEN directive allows to include the instructions, defined by FORM and
XFORM, in the existing Assembler by extending the Assembler’s symbol table.
A particular useful pseudo-instruction or system macro can be defined once for
all times instead of having to be generated by a FORM directive in every
program where it is used.

FORM FORMat definition FORM

This directive is used to define the format of a word or a group of up to 8
words named by an identifier which can be used as an instruction mnemonic
later in the program.

The directive is written as follows:

Syntax

<label > _FORM._. < field definition >[, < field definition >, <field
definition > ... <field definition>1[/ < field number list>]

where:

< field definition > ::= < field length definition >[| = |:Jfield value definition>1]
< field number list > :: = < field number >[, < field number list > |

and

< field number > ::= <decimal integer >

<field length definition> specifies the number of bits to be allocated to a
field of the word and may range from 1 through 16. If several fields are defined

inside a word the sum of the field lengths must be.16. The maximum number of
consecutive words defined by a single FORM directive is 8.

1-41

<field value definition > can be used to place a value in the field to which it
refers when the value is preceded by an equal sign (=).

If the value is preceded by a colon (:) the value indicates the address of a word
in relation to the first word of the expansion defined by FORM. The value
definition itself may be a predefined expression, an external reference without
any displacement or a predefined absolute or relocatable expression. If a
particular field has not received a value definition the field will be filled wit
Zeroes.

<label> defines the instruction mnemonic. The operand field of the directive
must then contain values to be placed in any non-predefined fields. The last
non-predefined value is default value.

Example
MNEM_FORM..16=/85A0,16:14,16 = /8141,16 = INST, 16, 16, 16
/85A0 —arithmetic or logical value
MNEM + 14 —address of word following this block
/8141 —arithmetic or logical value
INST —identifier
0-0
0-0 3 words containing zeroes
0-0

The parameter 16:14 indicates a word address seven words from the beginning
of the expansion defined by FORM. The programmer has to specify this
address as the last three words are left zero.

Example

This example shows how the programmer may make an 1/0 request if not all
parameters are known. By using the FORM directive he does not have to write
the instruction sequence:

LDK A7, —
LDKL A8, DECB
LKM

DATA 1

1-42

00000 IDENT FORM

00001 INOUT FORM 8=/07,8,16=/80A0,16,16=/2804,16=1
00002 0000 BUFFER RES 10
00003 0014 0008 DECB DATA 8,BUFFER,20,0,0,0
0016 0000 R
0018 0014
001A 0000
001C 0000
001E 0000
00004 0020 0782 START INOUT /82,DECB
0022 80A0
0024 0014 R
0026 2804
0028 0001
00005 002A 2804 LKM
00006 002C 0003 DATA 3
00007 END START
SYMBOL TABLE

BUFFER 0000 R DECB 0014 R START 0020 R
ASS.ERR. 00000
:EOF

From now on the programmer may use INOUT.../82, DECB instead of
LDK_A7,...

Field number list

If the programmer wishes to put the values of the operand field of the FORM
defined mnemonic in an order different from that of the non-predefined field
they are to occupy, or if the user wishes to alter the values held by any of the
predefined fields, he must use the field number list parameter in the FORM
directive.

Each field that is generated is given a number, beginning with 0 for the first
field, 1 for the second field, n-1 for the nth field (n may not exceed 15).

The field number list must be preceded by a / (slash) and be placed after the
last field definition of the FORM directive.

All not predefined fields specified in the field definition list must also be
specified in the field number list.

A field number is represented as a decimal integer.

If a field number list is specified after a FORM directive, the operand
expressions following the pseudo-mnemonic will occupy the fields specified in
the field number list in the given order. In this way, the contents of predefined
fields may be altered while blank fields may be left blank.

1-43

Example

Suppose the user has specified in his program, by means of a FORM directive,
a 16-bit word of the following format:

5=2 2=1 1=1 8=2

000100 1|10 0 0O0O0O0OT1TO0

field no 0 1 2 3
He wishes to have this word changed in:

5=2 2=3 1=0 8=1

0 001 0)J1 1f0jO0O O 0 0 O O O 1

field no 0 1 2 3

He may do so by using the following instruction sequence in his program using
the field number list in the FORM directive

IDENT EXAM

WORD FORM 5=22=1,1=1,8=2/2,1,3

WORD 0,3,1

END

The Assembler will now change the fields as follows:
field no 2 (1=1) will be changed to contain the value 0
field no 1 (2=1) will be changed to contain the value 3
field no 3 (8 =2) will be changed to contain the value 1
field no 0 (5=2) will keep the value 2.

The operand expressions following a pseudo-mnemonic are positional
parameters. If one parameter is omitted (other than the rightmost one), its
position must be indicated by a comma.

If a FORM defined mnemonic is identical with a standard instruction
., mnemonic, the pseudo-mnemonic is given priority.

1-44

XFORM eXtension of a FORM directive XFORM

Syntax
<label > _XFORM .. < FORM-defined pseudo-mnemonic >, < field list >

The XFORM may be used each time two FORM-defined pseudo-mnemonics
have to be defined which do not differ in the format but only in the values of
the predefined fields.

The field list is a series of field definitions giving the format of the new pseudo-
mnemonic and the contents of its fields.

The field length definitions must be the same as those of the FORM-directive
referred to and appear in the same order.

Example
INST1I_FORM_8=/FF, 4, 4, 16/1, 3, 2
INST2.FORM..8=/33,4,4,16/1,3,2

The XFORM directive combines the two and generates an INST2 instruction
as follows:

INST2.XFORMINST1,8=/33,4,4,16

GEN GENeration directive GEN

The GEN directive allows to extend the Assembler symbol table so that it
recognizes and assembles a number of non-standard symbols in any program in
which they are used.

Syntax

—GENL

Restrictions

The GEN directive may only be used in the source program in which it appears
if it fulfills the following conditions:

— GEN must immediately precede END
— only the FORM, XFORM, EQU and EXTRN directives are allowed in this
program

The Assembler does not verify if those conditions are fulfilled. It checks only
if:

— object code is produced
— assembly errors have occurred

Example
IDENT_FORM

INOUT - FORM .8 = /07,8,16 = /80A0,16,16 = /2804,16 = 1
GEN
END

The following procedure must be followed to include the features provided by
GEN:

— link the Assembler with the generated object module by using the Linkage
Editor.

1-46

This is done in the following way:

S:SCR /O clear object file.

S: PLD ASM Assembler is in load module format. It has
to be extended with a new module. The
Assembler is now output on punched tape
in object code format.

S:RDO Read object code and place it on /O file.
S:RDS Read source program

S:ASM /S

S:LKEN,M

S: KPF /L, ASM The new Assembler, with name ASM

is placed in the library.

The output of this link-editing is the original Assembler extended with one new
mnemonic.

1-47

List of predefined symbols

NAME MEANING PREDEFINED INTERNAL
VALUE VALUE

| Instruction Counter 0 0

Al Register 1 1 2

A2 Register 2 2 4

A3 Register 3 3 6

A4 Register 4 4 8

A5 Register 5 5 10

A6 Register 6 6 12

A7 Register 7 7 14

A8 Register 8 8 1

A9 Register 9 9 3

A10 Register 10 10 5

All Register 11 11 7

Al2 Register 12 12 9

Al3 Register 13 13 11

Al4 Register 14 14 13

Al15 stack pointer 15 15

Note:P, A1, A2, A3 etc. can only be used to call the registers. If they are used
for other purposes an error message will be output.

1-48

4 Programming considerations

Data transfers between input/output devices and the central processor are
controlled by device control units each of which may have one or several
devices attached to it, depending on the type of device. Control units are
attached to the central processor by an interrupt, or break line, by address
lines and other signal lines which are used by the computer to determine
whether a data transfer can be performed.

Data transfers take place through a channel, the General Purpose Bus. The
actual programming of the data transfers may be on a character or word basis.
where each word or character is programmed and transferred individually via
the Programmed Channel or the user may program blocks of words or
characters via the 1/0O Processor. In the latter case external registers may be
addressed.

Stand Alone or Monitor controlled programming

The basic difference between Stand Alone programming and Monitor
controlled programming is caused by the fact that in Stand Alone
programming the user has to write his own input/output routines whereas in
Monitor controlled programming the user may call certain monitor functions
by means of links to monitor which execute the input/output.

For information on programming in either mode refer to the P800M Software
Training Manual (Publication No 5122 991 1243X) and to page 1-55 of this manual.

Interrupt system

When working in interrupt mode each interrupt program may be connected to
an interrupt level. As the actioning of an interrupt involves the direct accessing
of the interrupt level’s start address from its hardware interrupt location, the
contents of this location must have been previously loaded with the correct
address.

The start addresses loaded in these locations are not fixed and must be defined
by the programmer.

interrupt level hardware interrupt location
0 to 62 /0000 to /007C

where level 0 has the highest priority and 62 the lowest. The levels are defined
at SYSGEN time (see Volume).

1-49

System stack

To save the contents of registers when an interrupt is made into the main
program, the hardware interrupt routine automatically uses register A15. This
register addresses the stack which is to hold the contents of the P-register and
the Program Status Word at the time the program was interrupted. It is
therefore necessary to reserve sufficient space for the stack and to load register
A15 with its start address. This may be done by using the appropriate assembly
directives and by defining the start address by means of an identifier. The start
address is the highest address reserved as the stack is filled from the high
towards the lower addresses.

Apart from the contents of the P-register and PSW, the stack may be used to
save the contents of other registers as required by the program. These registers
are saved by means of Store instructions (1 for each register). Before returning
to the main program, Load instructions are required to restore the contents of
the stack, prior to RTN. During the hardware action further interrupts are
inhibited. If the user wishes to allow the specific routine to be interrupted he
must given an ENB instruction.

User stack

We have seen that with the A15 stack the P-register, the PSW and any other
registers are saved with Store instructions in this stack towards the lower
addresses. Now, if a user calls a subroutine with a CF instruction the contents
of the P-register and the PSW are automatically stored in a stack he has set up
previously, for example as follows:

RES 20
STB EQU *-2
LDKL A 14,STB then the subroutine is called:

CF A14,SUBR and P and PSW are stored in the A 14 stack

(other registers may also be used as a stack pointer)

For example, for a program with two subroutines, one subroutine calling
another one, the saving may be done as follows:

SAREAT1
SAREA2

IDENT MAIN SUBRI1
RES 3 ST A1,SAREA1 ST
RES 4 ST A2,SAREA1+2 ST
! ST A3,SAREAT +4 ST
CF A14SUBR1 —
| CF A14 SUBR2 ST
END — -
LD A1.SAREAT1 LD
LD A2 SAREAT+2 LD
LD A3,SAREAT1 +4 LD
LD
RTN Al4 —
RTN

The following save operations take place in this example:

®

Stored automatically

®

A

—Al4

PSW (MAIN)

P (MAIN)

—Al14

PSW (SUBRT1)

P (SUBR1)

PSW (MAIN)

p (MAIN)

Stored automatically

SAREA1

Al (MAIN)

A3 (MAIN)

SUBR2.

A1.SAREA2
A2 SAREA2+2 -
A3 SAREA2+4

A4 SAREA2+6
A1.SAREA2

A2SAREA2+2
A3.SAREA2+4
A4, SAREA2+6

Al4 .

Stored by user-written instruction

SAREA2

A1l (SUBR1)

A4 (SUBR1)

Stored by user-written instruction

SAREA2

@ —Al4

PSW (MAIN)

| (MAIN)
Registers restored for SUBR1 P and PSW restored for SUBR1

SAREA1
O
~— Al4

Registers restored for MAIN P and PSW restored for MAIN

Note:

[t is possible to return from SUBR2 directly to the main program but in such a
case the user must update the A14 register contents i.e. the stackpointer,
himself (with 4, in this case).

Memory Management Unit MMU

The MMU allows to extend memory addressing up to 128k words and can be used
on the P857M.

Owing to this facility the P857M and its monitor are able to serve (a number of)
large programs, each of which may not exceed 32k words. Programs of this size
usually will be segmented, see Overlay Linkage Editor, and are stored on disc.
Apart from extended addressing the MMU also provides for memory protection.

Coding a program for operation with MMU and monitor requires no specific rules
compared to e.g.the P856M as far as the memory addressing is concerned, as the
addressing in an environment larger than 32k words, is transparent to the user.
Instructions relating to the MMU are only accepted in system mode.

When the user program is called a path of n segments is loaded into memory,
immediately after the monitor. These n segments are divided over parts of memory,
called pages, of 2k words each. As more programs may be running simultaneously,
the pages do not need to be loaded contiguously and may be dispersed over the
entire memory available.

The monitor builds, for each program running, a table containing data where each
page may be loaded and information particular to the page. This table is max. 16
words long and is loaded, by the monitor, in the 16 register segment table e.g. as
follows:

LDR A4,A11 where A11 contains the table address

TL A4 where the table is loaded

To save the information in the MMU registers an ES or ESR instruction may be
used (system mode only).

An address in the user program is divided in two parts. The four most significant
bits point to a word in the segment table. The MMU translates these 4 bits into a
6-bit physical page address and takes the remainder of the instruction address as an
address relative to the beginning of the page.

Layout of segment table word

0 5 6 7 8 9 10 15

bits 0 through 5 physical page address as derived from the four most significant
bits in the instruction address

bit 6 Page error indicator. This bit is set by the monitor when a
missing or wrong page is tried to be accessed The MMU will
give a “Page Fault” interrupt. This bit is not used for system
programs

bit 7 Read-only page. When this bit is set the page is protected
against overwriting. A “Page Fault” interrupt is given when a
program tries to write into it

bit 8 Modified page. This bit is set by the MMU when a write
operation took place in this page. Instead of being overlaid the
page is first written back onto disc before the area is used again

bit 9 Overflow. The setting of this bit depends on the value in bits 10
through 15

bits 10 through 15 Counter. A 6-bit counter is associated with each page
descriptor. All counters are incremented at regular time
intervals. This interval, which depends on the memory speed, is
chosen at system generation time in a ratio 1 to 256. During
execution of a program, each time a page of the running
program is called the counter is reset to zero. If a counter
reaches the interval set an overflow bit is set. When space in
memory is required the Operating System swaps out those pages
which have the overflow bit set.

Memory Protect
The memory protect facility of the MMU is obtained by setting bit 7 in the table

containing the words to be loaded in the MMU segment table registers. Remember,

however, that instructions concerning the MMU are only accepted in system mode.

If an attempt is made to access a protected page a “Page Fault” interrupt is given.

This interrupt has the highest priority and causes storing in the system stack of:

— the address of the instruction which caused the interrupt

— the PSW

— a word containing the page address of the page in which the fault was
detected, and the program level.

This interrupt is reset automatically after a branch has been made to the interrupt
routine address.

Trap action

Instructions input to the P800M computer are checked and decoded by the CPU’s
hardware.

If an unexecutable instruction is encountered a trap action is started which consists
of a hardware and software operation.

The hardware operation of the trap consists of the following actions:

— the cpu does not attempt to carry out the instruction

— interrupts are inhibited

— information which refers to the instruction’s address and processor status (P
and PSW) are saved

— an indirect branch is made to location /7E (start of trap routine)

The software operation of the trap consists of:

— save the address in P
— save the instruction’s bit pattern and its second word, if any
— activate the Simulation routine (see below).

Simulation routine
The simulation routine allows the P852M user to simulate the following
instructions:

multiply double shift
divide multiple load
double add multiple store.

double subtract

This routine, which is activated each time an illegal instruction code is met in the
instruction sequence, consists of two parts. One part analyzing the bit pattern saved
by the trap routine and one part executing the instruction listed above.

The routine may be interrupted.

1-54

Adaptation of P855M software to P800M software

When P855M programs are to be adapted and run on the PS00M computer the
following points must be taken into account:

1 the sequence... ENB INH... in the P855M software permits to have the
program interrupted after ENB to see whether an external interrupt is pending.
As in the P800M external interrupts are not scanned at the end of a short
instruction, a dummy instruction must be included after ENB to allow for an
interrupt scan.

The sequence may be altered in... ENB/RFx+2/INH...

2 in the P800M a stack overflow interrupt is given as long as the register A15
contents remain < /100. For the P855M a stack overflow interrupt is generated
when the contents of register A15=/100.

Use of the RTN instruction

Operation of the RTN instruction is slightly different for the P852M on one hand
and the P856M and P857M on the other hand. The RTN instruction on the P852M
reloads from the system or the user stack (the system stack is pointed to by register
A15 and the user stack by one of the registers A1 through A14) the contents of the
P register and the PSW as saved when the interrupt routine or subroutine was
entered.

On the P856M and P857M the return is as follows:

When one of the registers A1 through A14 is specified, the P register and the CR
field of the PSW in the user stack are reloaded. When register A15 is used as a stack
pointer, the P register, bits 0 through 7, bit 9 and bit 15 are reloaded from the
system stack.

Stand Alone Input and Output Programming

Programmed Channel

To control the data transfer between the device and the CPU the following
instructions are, in general, available:

CIO Start Start input or output
CIO Stop Stop the input or output

INR Input one character

OTR Output one character

SST Send status of the control unit
TST Test if the control unit is busy

The register <r3> used in the CIO instruction must always contain additional
information for the control unit e.g. input, output, parity, echo etc. Which
information must be loaded can be found in the relevant hardware manuals
delivered with the system.

When the CIO Start instruction is accepted (test the condition register) it is followed
by an INR or OTR instruction. When the last character is transferred a CIO Stop

1-55

instruction must be given. This instruction should be followed by an SST instruction
which gives the status of the relevant control unit and may reset an interrupt and
switch a control unit to the Inactive State.

170 Processor

The 1/0 processor allows the high speed transfer of variable length or fixed
length data blocks between a suitable control unit and the processor.

Up to eight 1/0 processors may be connected to the General Purpose Bus
each of which may control up to eight control units via eight subchannels.

Each 1/0 processor has implemented two working registers which are used to
effect register to register exchanges with the cpu internal registers.

Before a data transfer can be realised the user has to specify two control
words for two external registers. These external registers are addressed by 2
WER instructions in which the address part must be composed as follows:

0 processor sub channel
address address

8 9 10 11 12 13 14 15

l———control unit’s address

where processor and sub channel address are determined at system installation
time. Both addresses, which may range from 0 thru 7, form together the
attached control unit address. Bit 15 determines which control word is sent:
bit 15 = 0 1st control word

1 2nd control word

0/1

Format of control words
The format of the first control word is:

0 1 2 3 4 15

where:
bit0 = 1 c¢xchange is in word mode

0 exchange is in character mode
bit1 = 1 exchange is from memory to control unit (output)

0 exchange is from control unit to memory (input)
bit2 = 0
bit3= 0

bits 4 thru 15 specify the number of characters or words to be transferred.

1-56

The format of the second control word is:

starting address

0 15

When operating in word mode the 1st word of the block is always even (bit
15=0). In character mode, and bit 15=1, the right hand character is addressed
(odd address), When bit 15=0 the left hand character is addressed (even
address).

Example:
LDKL A1,/8032 word mode, input, 50 words
LDKL A2BUF starting address of block
WER Al/A send control words (0001010 and 0001011)
WER A2,/B
CIO A4,1,/01 start input (address: 000001)

The RER instruction may now be used to read a transfer’s effective length after
termination of the I/O operation.

When the exchange is completed an SST instruction should check the status of the

control unit and set it to the Inactive state. The control unit may now be
re-initialised for a new transfer.

1-57

Input/Output Programming on Programmed Channel
a) withouvt ‘rterrupts

TST
3
CR
unknown |address
< ERROR)
1
1 0
CR

LAST
character

1-58

b) with interrupt handling

CIlO
Start

CR

INTERRUPT

SST

1-59

Programming on I/O Processor

TST
3
CR Unknown address
0 ERROR
1 R3
15
Interrupt
0
LOAD 1st

control word

I

LOAD 2nd
control word

CIO
Start

1-60

eonan
2080y
naunaz
pennd
20004
[L]
eron6
oeua7

ennas
02009
eoaie
gveit

aeal2
02413
gea14
[-LI'F%-}

20018
[-L.I1%4
280318

20019
een2e
pan2i
epa22
o802)
pe024
panad
29726
0027
20028

20929
aee3a
20031
eea32
20233
00034
20835
20036

aend?
0038
20039

02040
[-LI'L}Y
oeR42
29243
20044
0ABAS
00946
dee47
22048
2849
e2asn

2pee
0ee2
7804
0006
2008
annA
erac
20aE
ar10
2012
nuL4
8n1é
2018
oaLA
eetc
A@LE
an2e
en22
2024
2026
op28
202A
[.I'}14
002E
203e
0832
0834
2836
238

ar3A
2083C
Q03E
ap4p
ve42
o044
2p4s
2048
B04A
004C
Q04E
[T
ees2
0054
2056
nes8
205A
vasc
(1114
[LLT]
p62
2064
0066
¥068
Gu6A

2044
4954
2n49
5320
4545
4E20
5445
5354
20nA
207F
208F
2112
8pAR
eaep
2600
4600
8Co4
€842
eeen
4510
8Ce4
[TLY]
[-'T'3)
19014
s5Cia
4692
5Co4
4acoe
5co4

8pAp
oove
ni1e
CLET)
4600
5Co4
8512
45ie
5Cud
E542
eaea
4510
S5Cua
9040
LT}
19014
s5Ci0
2514
4510
5Ced
4690
SCed4
4CDw
5Co4
207F

IDENT

QUTPUT

EXAMPLE OF STAND ALONE PROGRAM TO OQUTPUT A
MESSAGE ON THE TELETYPE LOG AND NEXT HAVE THE

ESSGE

START

ASR

DATA

HLT
INH
LOK
LOKL

LOK
clo
RE (NA)
LCc

0TR
RB(NA)
ADKL

SuK
RB(NZ)

clo
RB (NA)
8s7
RB(NA)

»
»
"
+ SAME MESSAGE PUNCHED ON THE TELETYPE PUNCH UNIT,
L2
*
M

' DIT I8 EEN TEST',/000A

Al,18
AB,0

AB,0
A6,1,/10

u2
AS,MESSGE, A8

AS5,0,/19
o2
AB,1

ALyl

ASR
AG,8,/10
"2

Ad, /1@
o2

-
» PUNCH THE MESSAGE

-

PYP

LOKL
LOoK

AB,2

AL, 18
A6,
A6,1,/18
(T V3
A3,/12
AS,8,/710

"m?
A5, MESSGE, A8

A5,8,/10
“n2
LLTRY

ALyl

PTP
A8,/14
A5,0,/1@
LY 3
A6,0,/10
2
Ad,/108
*e2

START

COUNTER FOR NO OF CHARACTERS

START TELETYPE IN OUTPUT
ACCEPTED?
LOAD A CHAR IN AS

ACCEPTED?
POINT TO NEXT CHARACTER

ALL CHARACTERS PRINTED?
YES, SWITCH TELETYPE OFF
ACCEPTED?

SEND STATUS

ACCEPTED?

COUNTER FOR ND OF CHARACTERS
SWITCH TELETYPE ON IN OUTPUT

ACCEPTED?
= SWITCH PUNCH UNIT ON

OUTPUT THE CHARACTER IN A5
ALL CHARACTERS PUNCHED?

SWITCH PUNCH UNIT OFF
ACCEPTED?

1-61

Source program calling a subroutine in FORTRAN library

When writing a program in Assembly Language it may be useful to have a certain
operation performed by a subroutine which has been specifically included in the
FORTRAN library to execute such a function.

The user may call this subroutine, in his Assembly program, in the following way:

Suppose the user wishes to multiply two floating point numbers. The FORTRAN
library subroutine, which executes this multiplication, has F:RM as entry point.
The framework of the Assembly program, with only the relevant details, is written
as follows:

IDENT ASMPRO
EXTRN F:RM

FLNUM1 DATA —
DATA —
DATA —

FLNUM2 DATA —
DATA —
DATA —-

LDKL A13, PARLIS
CF Al4, F-FRM

PARLIS DATA FLNUM1
DATA FLNUM2

Before the CF instruction is executed, register A13 must contain the address of a
parameter list. This list must contain the address of floating point number 1 and the
address of floating point number 2.

A13 parameter list Ist parameter

[[.

2nd parameter

1-62

The subroutine in the library contains the following relevant items:

IDENT FRTLIB
ENTRY F:RM

RTN Al4
This subroutine does not use the stack of the calling program, except for the return.
When values are to be returned to the main program an integer will be returned to
A1 and a real value to the registers A1 to A3 inclusive (mantissa in A1, A2 and the
exponent in A3).

The main program must now be link-edited or link-loaded with the called subroutine
and the FORTRAN library.

The Linkage Editor selects those modules required for program execution.

1-63

PART 2

ASSEMBLER

Introduption

The Disc Assembler is a one-pass processor which is written in the system
library.

This Assembler operates under control of the Disc Qperating Monitor
(DOM) and translates the source programs, input via a source input unit, into

object code.

1 Input

The 1/0 requests from a program are handled by an Event Control Block. This
Block contains, among other information, a file code specifying a physical unit
or a specific file on disc.

A list of the file codes is given in Appendix A

Source modules

Source modules may be read from the source input device. Those modules are
placed in the temporary /S file where they are kept until they are processed by
thé Assembler.

When more than one module is input the modules must be separated by an
-EOS mark. The last module must be terminated by an :EOF mark.

When the file code specified in the ECB refers to a source file on disc this file
may be found in:

— alibrary (on disc)

— a temporary file.

ASM control command

The ASM control command may be introduced after the user has identified
himself by the user identification and calls the Assembler from the system
library. In this command may be specified a number of (optional) parameters.
The syntax of this control command is:

ASM._ L/S| <name > |[,NL]

where:

/S the source program to be assembled must be read from the /S file.

<name> indicates the name of a library source module or program to be
assembled.

NL if this parameter is specified the Assembler will produce no listing

of the assembled program.
If NL is omitted a listing is produced on the print unit.
Error messages, however, will always be listed.

i
&

2 Processing

The Control Command Interpreter checks the ASM control command
parameters for errors. !

When there was an error in the parameters an error message indicating the
error is printed, followed by the printing of S: at the beginning of the next line.
The user may now input the correct ASM command:

S:ASM
FILE NAME MISSING
S:PROG,NL

The source modules are now read and assembled.

Errors in the source program are detected by the Assembler. It is not possible,
however, to correct errors during processing.

In case of a fatal error during processing (I1/O error, Table Overflow etc.) the
source input is read until an :EOF mark is encountered. At that moment the
following message is printed:

FATAL ERROR HAS OCCURRED NO OBJECT CODE PRODUCED

and the object file on which the output of the Assembler was written, is
deleted.

3 Output

Object modules

The standard object output file for the Assembler is the temporary /O file. If
this file does not yet exist an assignment is made for it. When it did exist the
object output is written after the information already existing in this file unless
it has been closed by an EOF record. In that case a new /O file is created and
the. old one is deleted.

Assembly listing
The assembly listing is output on the listing device if the NL option is omitted.
The format of the print-out is:

L1 L 1 1 1]

decimal
line number
value of location
counter

v
hexa representation of
the instruction
F =Forward reference

R =Relocatable

X = External
source statement _
line image ~

comments <

* the sequence number of cards is not printed on the listing

Error representation on the listing

When a non-fatal error has occurred during assembly the processing continues
but the place where the error occurred is indicated by: =R, =L etc. preceding
the line in which the error occurred. An = is printed underneath the place
where the error was detected.

29

An error counter is updated every time an error occurs. The number of errors
is given after the printing of the symbol table, by:

ASS. ERR. <5 decimal digits > (see e;(ample)

Symbol table

Each label which appeared in the label field of an instruction is given an
address relative to the beginning of the program.

The symbol table consists of a list of labels for each external name defined in
or referred to within a module.

This table is always printed out even when the user did not ask for a listing.
The symbol table has the following format:

SY“RNL, TABLE

M3 AR pppr R Mi1BAR PARC R MPyMQD
ARDAAN X AEYIET]y X Sysag
MEAY RADE R T10PC 2136 R MIAR2 VIR
MEALS PAIF R TISVR #1%2 R MIAPA AP2F
MIR™ Y PARC R MIBRPAA MA274 R MIBARR QARRD
MERAYA BUA2 R MEIBA2 AAAA R MIBNAJ AacA
MIBI 4 aant R MIBA4A OQAEA R MIAQRY ALAnR
EMNSVK @#24F R

ASS ,ERR, Apone

This table will only be included in the object output, for debugging purposes,
when a symbol table name has been declared in the END directive.

DXL L XX

Error messages

The following error messages are output by the Assembler:

CODE

MEANING

DESCRIPTION

*1

Illegal identifier

The first character of a symbol must be a
letter.

*C

Illegal constant

— “constant” overflow.

— A constant with hexadecimal value
must begin with X / and end with /.

— A constant should not have been
written here.

— Hexadecimal constant written either
X” or/”.

*X

Illegal expression

— More than two symbols defined.

— More than three terms in the
expression.

— An external reference and a forward
reference have been specified in the
same expression.

— An external reference is preceded by a
minus sign.

— A plus or minus sign is not followed by
a term.

— A forward reference or external
reference is specified in a requested
predefined expression.

— A register expression may not contain
more than one term.

*R

Illegal relocation

— Either a predefined expression or
predefined relocatable section has been
input.

— Too many relocatable symbols are
added or subtracted from each other.

— The expression is equal to the result of
a subtraction of a relocatable part
from an absolute, part.

2-11

CODE

MEANING

DESCRIPTION

If an external reference is specified the
displacement value must be absolute.

The instruction code operation defined
by an EQU directive must be absolute.

*L

Hlegal label

The label has been defined previously
as:

— a symbol name

— an external reference name

— entry point name.

A label has been given where it was
not allowed.

A label must be specified.

«P

Illegal parameter

Too many parameters specified in the
operand of an instruction, in the
pseudo instruction or directive.

Not enough parameters specified in the
operand of an instruction, defined
pseudo instruction or directive.

A parameter in the STAB directive
may not be an entry point name, a
COMMON name or a forward
reference.

The operand in a DATA directive may
not give more than 16 code words.

” is not a character string.

Illegal use of a register name in a
standard instruction operand.

*O

Overdisplacement

Displacement value of parameter too
large.

*E

Not an even address

The specified start address is not even.
The specified AORG or RORG
operand is not even.

*M

Unknown mnemonic

Unknown mnemonic.
Unknown condition mnemonic.

CODE MEANING DESCRIPTION

*S lllegal statement — The ENTRY or EXTRN or COMN
directive is no longer acceptable.

— The directive does not need an
operand.

— The directive needs an operand.

— Invalid character.

— Invalid indirect addressing.

— Invalid condition specification.

— The label is not followed by an
operation code.

— 7("is not followed by’).

— The operand value of RES directive
makes the instruction counter value
negative.

— GEN cannot produce any code as
either any error occurred or the code
word has already been produced.

*F Illegal FORM or — An XFORM declared symbol must be

XFORM directive linked to a FORM defined pseudo
whose name is the first parameter of
the operand.

— More than 16 fields specified.

— Negative field length.

— The length of this field cannot be
contained in 16 bits. It is too long.

— A displacement value is not allowed
when the predefinition concerns an
external reference name.

— The : predefinition is only allowed for
a 16-bit field.

— Invalid predefined value of a field
(overdisplacement or negative value
for a less than 16-bit field).

— The division of the current word of an
XFORM declaration is not the same as
the corresponding word of the linked
FORM symbol.

2-13

CODE

MEANING

DESCRIPTION

The predefinition of the fields of the
current word of an XFORM
declaration are not the same as the
corresponding word of the linked
FORM symbol.

More than 8 words described by a
FORM declaration.

More than the number of words
described by the linked FORM symbol
described by an XFORM declaration.
The field number specified in the syntax
definition line is invalid.

Twice the same field specified in the
syntax definition line.

10
sorckrokk B

sororokorok |

Core overflow
End missing

IDENT missing

Fatal error. Too many symbols or
forward references used.

Fatal error. The END statement is
missing.

Fatal error. The IDENT statement is
missing.

2-14

\,

PART 3

LINKAGE EDITOR

3-1

Introduction

The Disc Linkage Editor is a one-pass processor designed to run under the
Disc Operating Monitor. The processor is written on disc. The task of the
Linkage Editor is to make from the object output of the language translators
(Assembler and FORTRAN) an object program which can be loaded into
memory and in which the external references are matched. This output
program is called Load Module and is executed by the CCI comniand RUN.
When the output of the language translators is to be input to the Disc Linkage
Editor it must not contain any absolute address. An error message ABS.ADR.
is given should an absolute address be encountered.

In the only control command for the Linkage Editor the user may specify a
number of options.

For debugging purposes he may specify whether a part or the whole of the
entry point symbol table is to be added to the Load Module.

33

1 Input

The input to the Linkage Editor may come from the following files:
— temporary object file

— the user library

— the standard library.

Temporary object file

This file is the main input to the Linkage Editor. On this file are written the
object modules read from object input, the output of the ianguage processors
and the modules from the libraries required for processing.

User library

On this file are stored all object modules the user decided to keep. This file is
scanned only by the Linkage Editor when in the LKE control command, see
below, the option U is specified or when N, S and U are not specified.

System library

This file keeps the system library and contains all the object modules belonging
to processor libraries. This file is only scanned when the option S is specified or
when N, S and U are not specified.

LKE Control Command
The LKE Control Command is a command handled by the CCI and calls the
Linkage Editor from the library:

LKE[N|S|UT[,M][,|DE|DS]I[,/ <address > [, <start address >]

where:

N The system or user library do not need to be scanned
S Only the system library has to be scanned

U Only the user library has to be scanned

Note: When neither of those three parameters is
specified the Linkage Editor scans both the
system and user library, the user library first.

M The listing of the map, which consists of a listing of
the module names and their loading address, and an
alphabetical list of all entry points and common blocks
together with their value, must be printed.

DE

DS

/ <address >

<start address >

3-6

Example:

LKE_M The map must be printed and both
libraries scanned

LKE_ No map, both libraries have to be
scanned

The whole symbol table with all entry points is to be

added to the load module. It will be used for

debugging purposes.

A symbol table containing only the internal symboi

entry point list is to be added to the load module.

Hexadecimal displacement value of the blank common

from the beginning of the load module.

If bit 15 of <address> = 1 relocatable blank common
0 absolute blank common

This option may be used for communication between

several load modules making use of the same blank

common.

The load modules may, in that case, be called by the

Load Monitor request (LKM DATA 9) and must have

been defined previously in a SEG command.

The address of the blank common must be specified in

such a way that it will not be destroyed when a load

module is loaded.

The address must be defined at link-edit time.

Default: The blank common, if any, is placed at the

end of the load module.

Name of the start address defined as an entry in one

of the modules in the /O file.

The name must be different from the option

parameters used in the LKE command: N, S, U, M,

DE, and DS.

Default: start address is the last start address

encountered in the /O file, if any.

Before the LKE is started an EOF record is written on

the /0 file, if not already done.

An assignment is made for the /L file onto which the

LKE will write the Load Module. If a fatal error

occurs during the link-edit operation the /L file is

deleted and a RUN command, without parameters, is

refused.

2 Processing

The Disc Linkage Editor processes the input object modules according to the
cluster type encountered in the input stream (see Appendix C). When the LKE
control command has been introduced the DLE starts linking together all
object modules of the temporary object file by matching, as much as possible,
the external references.

Once the temporary object file has been completely processed and there are
still external references which could not be solved the very first time, the DLE
will start scanning the current object libraries, either by default or by having
the relevant parameter specified in the LKE command.

The user library is scanned first and the DLE looks for the requested entry
points. If still not all external references are matched the DLE starts scanning
the system library and link-edits all modules after having found the missing
entry points. Should there still be left unsatisfied, the error message UNS.EXT.
(unsatisfied external reference) is printed on the operator’s typewriter, which
they are will be listed in the map.

When one of the Debug options has been specified — DE or DS — the DLE
adds to the generated load module a symbol table. When the DE option is
given the symbol table contains all entry points of the link-edited modules
(entry points of the internal symbol table are included).

When the DS option is chosen the symbol table contains only the entry points
of the internal symbol table.

The symbol table is organised in the following way:

NC |D|R|CYX]|S Ct
C2 C3
C4 C5
C6 Cc7
address
common length

37 .

where:

NC Number of characters, which may vary from 1 to 7, of
the symbol
D = 1 if the symbol is defined
= 0 if not
R = 1 if the entry point is relocatable
= 0 if absolute
(04 = 1 if the symbol is a common block name
= 0 if not
X = not used
S = 1 if the symbol appears in an internal symbol table
entry point name.
C = Symbol. The number of characters in the symbol may
vary from 1 to 7. They are coded in ASCII.
address = Address of the entry point name or common block
common length = Length of common.

The blank common (if any) is allocated at the end of the last link-edited
module or it is allocated at the place specified in the LKE command by
/ <address >.

The processor checks that the blank common area is not overwritten when a
new module is loaded.

Labeled commons are allocated immediately after the first object module in
-bich they appear.

3-8

3 Output

The output of the Disc Linkage Editor consists of:
— a load module

— error messages

— a listing and map (optionally).

Load Module

The executable program, output by the Linkage Editor and containing no more
external references, is called load module and is written on disc on the
temporary load file /L. If the user wishes to have this load module punched he
may do so by specifying the PLD command (see CCI commands).

The load module is a random file, each sector containing 188 code words and a
12 word Relocation Bit Table. Each word of this table indicates per bit if a
word is absolute or relocatable.

Bit 0 of the first word in the RBT points to the 1st code word (0 = absolute, 1
= relocatable). Bit 1 of the first word points to the 2nd code word. Bit 0 of the
second word of the table points to the 17th code word etc.

The first four words of a load module contain information for the system
loader and the Debug processor. The first link edited module starts from
relative address 0008.

Relocatable beginning address of the symbol table at

E the end of this load module.

L 1.ength in characters of the load module. ‘

L > Number of sectors occupied by the load module.

> Relocatable beginning address of the load module.

39 .

Error messages

Error messages are output when an error is encountered during processing.
The table below shows whether the error is fatal (abort) or not.

Output

Message Unit Abort? Meaning

I O ERROR Irrecoverable 1/0 error on file

<file > <ssss> T Yes <file > with status <ssss> of the
1/0 unit.

BLK.COM. P No Wrong optional blank common
address.

BLK.DAT <name> | P No <name > is an unknown common
block name used in a Block Data
Subprogram.

DBL.DEF.<name> | P No <name > is defined more than once
as an entry point or as the name of
a common block.

INV.LGH.<name> | P No <name > is a common block name
whose length exceeds the maximum
length allowed.

UNS.EXT. P No There are one or more unsatisfied
external references. The load
module may be executable when no
references are made to its externals.
The externals are listed in the map.

ABS.STR. p No Absolute start address (ignored).

ERR.MOD. P No A link-edited module has received
an error flag from assembly or
compilation.

NO STRT. P No Wrong or not start address.

INV.IDT T&P Yes Invalid IDENT record.

PRG.OVL. T&P Yes Generated load module exceeds 32k
words.

TBL.OVL. T&P Yes Not enough space to link-edit these
modules.

IDT.MIS. T&P Yes IDENT record missing.

END MIS. T&P Yes END cluster missing.

ERR.LKE T&P No A non-fatal run has occurred during
this link-edit run.

ABS.ADR. T&P Yes An absolute address was read. The
Disc Linkage Editor does not accept
absolute addresses.

T = operator’s typewriter

-
([

line printer

3-10

Listing and Map

When the parameter M in the LKE command is not specified, nothing will be
printed on the operator’s typewriter or line printer except for error messages.
When M has been specified the DLE prints the name of each link-edited
module (including library modules), together with its relative beginning
address, after completion of the link-edit run. The module names are listed,
each on a new line, in the order of their occurrence.

Next a complete map of all entry points and common block names is given in
an alphabetical order followed by their value. When a name is not defined yet
four asterisks are printed instead of the value.

A letter indicating the type is printed behind the value.

A = Absolute

C = Common block

R = Relocatable

S = Internal symbol table
U = Undefined
Examples

This example shows which CCI commands may be used to assemble modules,

to link and to execute them.
S:SCR

S:RDS

S:ASM /S

S:LKEN,M

S:RUN

Clear the temporary files.

Read the modules to be assembled (from
paper tape or cards) and place them in the /S
file.

The modules are read from the /S file,
assembled and placed in the /O file.

The object output from the Assembler is read
by the LKE. No scanning is requested and a
map is printed.

The load module is stored in the /L file.

The load module is executed.

The following example shows how to assemble a program stored in a library,
execute it and store the load module in a library.

S:SCR
S:ASM <ident >

S:LKEN,M

S:RUN
S:KPF /L, <name >

Clear the temporary files.

The name of this program is read from the
library.

The output from the Assembler is read by the
LKE. No scanning is requested and a map is
printed. The load module is stored in the /L
file.

The load is executed.

The load module in the /L file is given the
name <name >, and is stored.

3-11

PART 4 OVERLAY LINKAGE EDITOR

4-1

Introduction

When a program has been assembled or compiled it consists of a (large) number of
object modules which, together, may not yet form an executable program when
there still are external references, i.e. references from one module to an other, to be
matched.

Apart from linking of references requirements the program may have such a size
that it will occupy most or more of the memory space available during execution.
The Overlay Linkage Editor copes with both problems by linking all external
references, if they can be matched, and by generating a segmented program
according to the overlay technique. This overlay technique makes it possible to
load into memory, at execution time, only those parts of the program which are
required at a certain moment and which will be overlaid if their presence is no
longer necessary.

Compared to a non-segmented program, the producing of a segmented program
requires some extra words which are added to the load module. At execution time,
however, a considerable memory space is gained. Using the Overlay Linkage
Editor for segmented programs may therefore be useful only when the user
program occupies most or more memory than being available.

The Overlay Linkage Editor operates in a P856M or P857M disc operating system
under control of the DOM, DRTM or MAM monitor and occupies 6.5k words of
memory.

The processor is also able to produce a non-segmented program. In that case the
object modules offered to it on the input file for processing must be arranged in a
different way.

43

1 Overlay Technique

This chapter contains a general description of the overlay technique and gives
some definitions of terms.

The overlay technique is a programming technique which allows to reduce the
memory space needed for program execution.

The program’s object modules must be linked and organised in such a way that the
program’s modules are only loaded when their presence is required.

To obtain this goal an overlay tree structure can be designed which is the graphical
representation of the program’s organisation to meet the overlay requirements.
An overlay structure has as basis the root which is that part of the program which
will always be in memory as it exercises the control of the program. The branches
of the tree, called paths, constitute together with the root, the way along which the
program is executed. Each path of the tree consists of one or more segments which
may be built of one or more modules. The order in which the segments are placed
along the path is determined by the user, depending on the program and the
references segments make among each other.

The beginning of each segment is called node. The level of a segment in a path is
the number of nodes between that segment and the root. In a path segments with
a lower level are called ascendants and segments with a higher level are called
descendants. A segment located in another path is called exclusive.

Example

A program consists of 10 modules which we will number a through j. Of these
modules a and b form the root (segment 1).

In the program we can distinguish 6 paths and 9 segments (root included, of which
segments 1, 4 and 9 are built of more than one module.

45

The 6 paths are:

Figure 5.2 Example of Overlay Tree

1 2 3 4 5 6
a a a a a
St S1 S1 S1 S1 S1
"""" I R
d d d
S2 S2 S3 S3 S3
g i
<6 f g h
55 S8 S4
S9
S7 Fm———-- .
o — - - — — =]
i
Figure 5.1 Example of paths
Of these 6 paths the following overlay tree may be built:
level 0 S1
| NODE 1
I
level 1 S2
lN ODE 2 level 1 S3 level 1 S4
NODE 3
| |
level 2 S5 S6 S7 S8 S9 level 2

In this example will, at execution time, first path 1 be executed and then path 2. Of
the latter path are already in memory segments 1 and 2. Segment 5 of path 1 is no
longer necessary and will be overlaid by segment 6. Segments 7 and 3 will next
overlay segments 6 and 2 etc.

4-6

2 Programming Considerations

Though no specific programming requirements are necessary to have a successful
link-edit and production of a segmented program certain rules should not be
overlooked.

— segmented programs are not re-entrant as segments will be overlaid during a
run. Only the root and blank common are never overlaid.

— it is not possible to return, by means of an RTN instruction or RETURN
statement, from an exclusive segment if that segment has been called by a CF
instruction or CALL statement. The reason is that the stack may not contain
the right information for a proper return as the segment is overlaid by the
exclusive.

— a Block Data Subprogram must be in the segment with the highest level using
the common.

4.7

3 Processing the Input File

The program to be linked must be placed on the /O file. The modules may be called
from the library by means of an INC command or modules may be assembled or
compiled (ASM, HSF of FOR).

Since these modules may make references to other modules in the user or system
library or both, the libraries have to be scanned by the processor to look for the
missing references, i.e. when the user asks to do so in the OLE command, see below.
To facilitate the scanning of the user libary a library directory is created and kept
up to date each time a module is kept in the library by a KPF /O command or
deleted by a DEL /O command. The directory is placed in the user library by the
system under the name OBDIR and consists of a random file of type UF.

Segmented program
To produce a segmented load module the program modules must be placed on the
/0 file according to the overlay design made.
The first segment on the file must be the root. Next the following segments must be
loaded as follows:
— when several (exclusive) segments have the same immediate ascendant their
common beginning location is called node. To define the node on the /O file the
command NOD name must be given, where name in the command may consist of
up to 6 alphanumeric characters specifying the name to be given to the node. This
name is recorded as an ASCII record on the /O file and is used by the Overlay
Linkage Editor, but the name is not included in the load module.
When several modules form a segment, as many INC, HSF, ASM or FOR
commands may be given as there are modules, until a following NOD command.
Up to 128 segments may be specified for one run.

" At the end of Chapter 4 an example is given how to proceed.
When all segments are on the input file the Overlay Linkage Editor must be called
with the command OLE, whose syntax is:

OLE_[N[S|UT[,MT[,|DEIDS][,/ <adress>][, <entry name >]

where
N = no library need to be scanned
S = the system library must be scanned
U = the user library must be scanned
default: the user and system library must be scanned (in this order)
M = a map of the overlay structure followed by a symbol table is printed on

the listing device. In case a non-segmented program is to be produced the
map has a different structure. See the example at the end of Chapter 4.
default: no map is printed

49

DE

= the symbol table with all entries of the root is placed at the end of the root
for debugging purposes

DS = the symbol table with only the internal symbol entry point list is placed at
the end of the root for debugging purposes
default: no symbol table is added to the load module. However, a symbol
table will be printed on the map

/ <address> the user may specify the absolute hexadecimal address of a

blank common.

default: the blank common is relocatable and is placed at the
end of the program after the “region”. See page 4-11.

In this way the blank common may be used as a system’scommon
for communication between different tasks in a DRTM system.

<entry name> name of the start address defined as entry point in one of the

modules of the root.

default: the program’s start address will be the last start address
defined in any module of the root, or the last start address
encountered on the /O file (for non-segmented programs).

A start address in a module included during scanning is not
taken into account.

Processing

The

processor starts reading the whole input file /O into memory. All external

references encountered during reading are placed in a symbol table, at the same
time indicating whether the reference is absolute or relative.

The
The

external references may consist of entry points or labelled commons.
OLE now tries to match the references according to the overlay structure of

the program and it takes the following rules into account:

4-10

references are first looked for in the segment. If they cannot be found in the
segment, the ascendants are searched and next the descendants.

If a double definition was given in an ascendant the first one encountered is
taken and a non-fatal error message is printed.

If a reference is made to one or more descending segments the reference is
defined the first time it is encountered. The external reference in that case is
not replaced by the entry point’s address but by the address of a link block
which points to the segment loader.

depending on whether the user has specified the relevant options in the OLE
command, or uses the default value, the processor starts looking for the
missing reference in the user library (U), the system library (S) or both (default).
Each module, or file, of such a library has a directory containing all relevant
information as given in clusters 2, 5, 6 and 7 concerning the entry points,
externals or commons in the module or file.

If the entry point is found in a library the module which contains the entry
point is included in the program. If the module in which the entry point
appears is referred to by more than one segment the module is included in the
segment with the lowest level.

— If the external reference is not yet found after scanning one or both libraries
the Overlay Linkage Editor starts looking for it amongst the exclusives.
As the referencing to exclusives might create stack problems a warning
message is output.
When the reference is found in an exclusive segment the external is not
replaced by the address of the entry point but by the address of a link block.
Should the entry point be present in more than one exclusive segment the first
time the entry point is encountered is taken as the definition.

Processing of commons
Commons may be labelled or blank. The Overlay Linkage Editor processes the
occurrence of blank or labelled commons in a different way.

Labelled commons

Labelled commons have a fixed length. They are allocated by the processor at the
end of the segment in which they are referenced.

Consequently, they may be overlaid during a program run, but the initial values
given by a Block Data Subprogram are reloaded each time the segment is loaded.
When a reference is made to a labelled common whose label is used in several
segments, the common is allocated to the segment with the lowest level.

Blank common

The largest blank common encountered in the program is placed at the end of the
program and is never overlaid.

The user must, however, take care not to destroy this area when he is using a Get
Buffer request. The beginning address of this buffer must be pointing to a location
after the last address of the blank common. See also the example on page 4.15.

When the user has given an absolute addres to a blank common in the OLE
command the blank common is loaded at the address specified.

Load module
At the end of processing a segmented program is built.

When the load module is generated the object code from the modules is taken and
relocatable words and external references are replaced by their real addresses.
Moreover, some information is added in front of the root. See the description of
the load module in Chapter 4.

The Overlay Linkage Editor adds each time a segment is loaded, a segment load
block to the root which contains information of where the segment is to be loaded,
its length and the sector of the disc where the segment can be found.

The last block is followed by segment loader which tests whether a segment has
been loaded or not when the program is executed.

4-11

4 Output of Overlay Linkage Editor

The output of the processor consists of:
— load module

— map (on option)

— symbol table (on option)

— error messages

LOAD MODULE

The load module is an executable program in object format. The module is output
on the /L file. Each sector of the file contains 188 code words and a 12-word
relocation table (RTB) of which:

— bit 0 of word 0 1 1if the first word is relocatable
0 if the first word is absolute
— bit 1 of word 0 is associated with the second code word
— bit 0 of word 1 is associated with the 17th code word
etc.

The first code words of the load module, which are stored in the first locations of
the program, have the following meaning:
— location 0 for non-segmented program
start address
for segmented program
start address is increased by 1 and points to a location in the root
— location 2 for non-segmented program
number of sectors occupied by the load module on disc
for segmented program
number of sectors occupied by the root
— location 4 effective program length (blank common, if not given'an absolute
address in OLE command, included)
— location 6 if DE or DS was specified in the OLE command this location
contains the symbol table address
— location 8 for non-segmented program
first code word of the first-module of the program
for segmented program
length of program area (which may be longer than effective
program length. See description of REGION)

4-13

— location A and following

for segmented programs only

In location A is given the number of segments of the program, the
root excepted.

The following n X 4 words contain n segment load blocks.
The last 4-word item is followed by the segment loader

MAP AND SYMBOL TABLE

An example of a map is given at the end of this chapter.

START
LENGTH
REGION

start address of the program

length, in characters, of the longest path

since the segments are loaded per sector, an entire sector may
therefore be loaded without the sector being completely filled with
a segment. REGION is the length of the longest path as loaded
from n sectors.

1

4+
last sector i | this area is destroyed during segment
of segment : loading but is not used at run time
L
common

4-14

Example

The following example explains the difference between the length
and region.

One time a program contains an absolute blank common and in
the other example the program contains a relocatable blank
common.

Absolute Blank Common

Length J

Program

2777 77777/

unused sector

space / /

L Region

Here Length < Region, but it
may happen that Length =Region
if all sectors were entirely used

absolute blank
common

Relocatable Blank Common

/

Program

N

Length { /1; 7772772777

used sector
é space // //

> Region

relocatable
blank common

1st address
of Get Buffer

Get Buffer

4-15

Next the segments are printed in ascending level order.

where:

segment # number of the segment in the overlay tree

address address of the segment in memory

sector # number of the sector in which the segment is written on /L
ascendant# number of the segment’s immediate ascendant. For the root this is

always # FF.

Then the ident(s) of the module(s) in the segment are printed plus their module’s
address.

The list of segments is followed by the symbol table. All entry points and common
blocks, belonging to a segment, are listed in an alphabetic order. The symbol table
is built of the following items over 4 rows:

type segment address name

where:

type = A absolute entry point
B absolute address of blank common as given in OLE command
C relocatable blank or labelled common
D symbol table entry point
E relocatable entry point

segment = number of the segment in which the symbol appears

address = address of the symbol

name = entry point name. If the same name is defined in several segments the
name is printed each time it is encountered but with a different
segment number.

ERROR MESSAGES

During and after processing error messages may be printed which may (fatal error)
or may not (non-fatal error) influence the processing and the output of a correct
load module.

At the end of processing the number of errors are printed if there were any,
followed by the error message(s).

Fatal errors
Fatal errors cause the /L file to be scratched and no load module is produced.
Fatal errors are printed on the line printer and on the operator’s typewriter.

Message

CORE OVERFLOW (not enough space for the processor)
DIRECTORY AND SYSTEM LIBRARY NOT CONSISTENT
DIRECTORY AND USER LIBRARY NOT CONSISTENT
END MISSING (EOF FOLLOWING IDENT)

4-16

END MISSING (NOD FOLLOWING IDENT)

END MISSING (2 CONSECUTIVE IDENT)

FIRST ROOT RECORD IS EOF

IDENT MISSING (END FOLLOWING NOD)
IDENT MISSING (EOF FOLLOWING NOD)
IDENT MISSING (FIRST OF ROOT)

IDENT MISSING (2 CONSECUTIVE NOD)

IDENT OR NOD RECORD MISSING OR INVALID
I/0 ERROR <ECB0O> <ECB8>

NOD NOT ALLOWED BEFORE THE ROOT
PROGRAM LENGTH EXCEEDS 32k (the longest program unit > 32k)
2 CONSECUTIVE NOD

Non-fatal errors

Non-fatal errors are in fact warning messages for the user. The error is printed on
the line printer.

The processor continues processing but the produced load module may or may not
be executable.

The hexadecimal number of errors is printed on the line printer and operator’s
typewriter after processing.

Messages
ABSOLUTE ADDRESS IN MODULE <name> SEGMENT <number>
ABSOLUTE START ADDRESS IN MODULE <name>
DOUBLE DEFINITION ON < name>
(the first definition is taken)
ERROR IN MODULE < name>
EXCLUSIVE REFERENCE FROM SEGMENT < number> TO <name> IN
SEGMENT < number >
NO START ADDRESS
REF. TO UNSATISFIED EXTERNAL <name> IN SEGMENT <number>
AT ADDRESS < number >
(the address is relative to the beginning of the segment)
UNDEFINED START ADDRESS NAME
(the name specified in the OLE command is not defined in the root)
<number> UNSATISFIED EXTERNAL REFERENCES
(<number> is in hexadecimal. The symbol table indicates which external
references could not be matched by printing an asterix, as follows:

ey SYMBOL TABLE e

@9 QUEE SROQTF E ¥l 2174 $SEGF) E 92 ©#{HBC $SEGF2 E ¥3 ©#1BC $SEGFI
B4 0174 SSEGF4 b 75 @a28C SSEGFS E 96 @18C SSKGF6 E W9 DUEE XKOUTF
81 ©¥174 %SEGFL £ U2 a1B6 XSEGF2 E /3 w16 XSEGF3 E ©4 6174 %5rGR4
PS5 278 %SEGFS E Vb @1B6 XSEGFS + #w wwwa FICL * we xwww FIEROY
ww wxyw FIERZ4 % wx wtdw FIFR1E % ¢+ wwnrw FIER]L % ew wersx FIERLK
“e @A FeFCT * kw wexy FI(2 * -

*x wekew F IS4 t “y @154 SEGF{ £ E

P4 O15A SEGFA4 £ ¥5 p216 SEGFS £

*x wwww F1S2
92 ©@19C SEGF2
A6 ©19C SEGFO

*e wexw FIST
03 W19C SEGLFD

M+ >emmmm

4-17

Example:
The following FORTRAN program consists of 7 modules of which
ROOQOTF is the root.

140

1o

ine

4-18

TVENT ROOTF
CUMMON N
N®Q

CALL SEGF1
CALL SEGF4
END

IDENT SEGF2
SUBROUTINE SEGF2
COMMON K

KaK+)
WRITE(2,100)K
RETURN
FORMAT (1X, 'SEGMENT
END

IDENT SEGF4
SUBROUTINE SEGF4
COMMON M

MEM4 |
WRITE(2,140)M
CALL SEGFS

CALL SEGF6

RETURN
FORMAT (1X, ' SEGMENT
END

IDENT SEGF6
SUBROUTINE SEGF6
COMMON

LoLey
WRITE(2,100)L
RETURN
FORMAT (31X, 'SEGMENT
END

Y11

' I1)

1, 11)

140

1ue

100
209

IVENT SEGF L
SUBRUUTINE SEGF1

COMMUN M

LELESY

WRITE(2,1v0)nM

CALL SEGF2

CALL SEGFS

RETURN
FORMAT (1X, 'SEGMENT ', 11)
END

IDENT SEGF3
SUBROUTINE SEGFJ

COMMON {

LeL+y

WRITE(2,100)L

RETURN
FORMAT(1X,'SEGMENT ',11)
END

IDENT SEGFS
SUBROUTINE SEGFS
COMMON K
DIMENSION 1I(4@)
KuKel

DO 19 J3y,44
1(J)sJ

WRITE(2,100)K
WRITE(2,204)1

RETURN
FORMAT (1X, ' SEGMENT 1,11)

module

FORMAT(1X, 'TABLEAU 1 31'//5(1X,8(12,1X)))

END

|
|

Of this program the following overlay tree may be built:

ROOTF | level 0
| NODE 1

SEGF1 level 1 SEGF4
|NODE 2 [NODE 3

SEGF2 SEGF3 SEGF5 SEGF6 | level 2

Supposing that all modules are in the user object library, where they have been
kept after HSF or FOR, the following procedure can be used to load all the
modules on the /O file.

INC ROOTF
NOD NP
INC SEGF{
NOD N2
INC SEGF2
NOD N2
INC SEGF3
NOD N1
INC SEGF4
NOD N3
INC SEGFS
NOD N3
INC SEGF6

The sequence may be followed by:
OLE S,M,/3000

Then the map is printed:

4-19

START = @aeCé6 LENGTH =2167E

SEGMENT & 00

ROOTF

eec4

SEGMENT # 41

SEGF1 @228
FIEXCL @434
FIOUTN @81C
FIBAZP @BCC
Fi1ASCI @pac
F30N 1108
FIRP 1306
SEGMENT # 04
SEGF4 @228
FIEXCL 0434
FEOUTN ©81C
FIBAZP @BCC
Fi1aSCI wD8C
F 10N 1108
FIRP 1306

SEGMENT # 02

SEGF2

1496

SEGMENT # ©3

SEGF3

1496

SEGMENT # ©5

SEGF5

1496

SEGMENT & 26

3EGF6

MMepMmMMmMMmMMMMMMMM»TImMMmmMmMM mmMmMmMMMMMMMMD

4-20

1496

208 3Jaan

83 14EC S$SEGF3
@2 MAEB XROQTF
M4 227C X%SEGF4
24 wDBC F3ASCI
24 vwS1» FiCL
21 “BAC F3iCOP
A4 GECA F:DD
74 1876 FiDM
A0 »1H8 FIERAJ
A C1CR FIERLK
B1 “994 FIFLOC
21 wBsae FIICI
A1 ABEA F310AS
41 wCB4 FLIOCS
A4 wBE2 FIIOP
W4 aC2A F3lORU
A1 2518 FiLy
ar pue2 FILPFC
A4 w078 FIMESS
21 23DA FIPREP
An vn2n6 FIRECVY
24 1336 FIRN
@4 134C FIRS
25 1634 Fi56
a1 v¥CB2 FiSTAS
21 ©798 Fisus
n1 1270 F3Ty
a1 13na FITLN
ap napy FITYFC
22 14BW SEGF2
6 1450 SEGF6

T rx OVERLAY STRUCTURE (221

hhw LEVEL #

ADDRESS = 24C4

[- wr

SECTOR # veun

FimMS @nF2 FIIOWS w204

kW LEVEL #

ADDRESS = wu228

1 waw

SECTOR # @ne@2

FISEQW w292 FISEUU W2A4
FIVARP 8714 FraWwus a/7a4
FIFLOC 2994 FIICIC B84

FSIORC aCub F:l0CS wLB4
FIDI ADA4 F30D NEAB
FiT3 1236 FiFX 1266
FITLN 1304 F3TRA 143E

ADDRESS = @228

SECTOR & wal}

FISEQW @292 FISEQU @#2A4
FIVARP 4714 FI1AWDS a7A4
FI3FLOC 9994 F3ICIC wB84
FIIORC @aces F3l0CS 4C84
P01 BDA4 FiDD VEAS
F3T3 1286 FiFX 1266
FITLN 1304 FiTRA 143E

ew LEVEL #

ADDRESS 3 1496

ADORESS = 1496

ADDRESS = 1496

FiTA 15C6

ADDRESS = 1496

2 LA]

SECTOR # “2eF

SECTOR # wv@1e

SECTOR # @01E

SECTOR # wa2ae

ae SYMBOL TABLE e

VA AVEB SROOTF
V4 0286 SSEGF4
"y @27C XSEGF1
85 1542 XSEGFS
21 P7A4 FiaAwW
w1 @76C FiCLlO
¥4 @BAC FiCOP
a1 @DD6 FiD1
?1 1108 FIDN
22 P1BC FIERW4
W wada FIFCT
N4 2994 FiFLOC
va pds4a Filcl
"4 ABEA FII0DAS
na pCH4 FII0CS
71 aCvé FEIORC
wi{ GBDE F:I0Z
w4 w518 FiLt
N1 @7DE F3LwW
w1 @81C FIOUTN
Vw4 »3DA FiPREP
#1 @D6C FERLUWS
u] 1308 F3RP
Wp n2nd FEIRSEY
7”1 n2A4 FISEQU
na wCH2 FISTAS
n4 2798 FISUB
@4 1279 F:T1
¥4 13DA FITLN
721 n714 FIVAR
®3 1480 SEGFJ

T T M T T T T T W T T T T B T MY M T om oo
mmEmEMmOmEMOmMEMEmmMmMmE MMM T mMmmmmm

@1 “286 SSEGF1
a5 1588 S$SEGF>
Y2 14E2 XSEGF2
46 14E2 XSEGFO
¥4 27A4 F1aW
w4 a76C FiclLlo
¥5 165C Finl
¥4 abpbe Fipl
¥4 1108 FIUN
“a A1CQ FIER1W
A1 12F4 FIFL
@1 126C FiFX
w5 1508 FiID
#1 uBCC Frl08
¥a a2e8 Fi1I0CV
34 4Ca6 FIIORC
24 ABDE F:10Z
4] AL1C FiL2
w4 WIDE FiIiLW
4 v81C FROUTN
¥y B782 FIRACL
¥4 BOU6C FEIRLWS
A4 1348 FIEIRP
n5 162C Fis2
¥4 A2Aa4 FISEQU
"y ACCA FISTAT
A1 n292 Fisw
W1 1244 F3T3
Wi {43E FITRA
¥4 714 FIVAR
w4 ¥242 SEGF4

REGION =174A4

ASCENDANT & FF

ASCENDANT & 2@
FIPREP @30A
FILWUS @70t
FICOPY wBAC
F3STAT @CH2

FiumM
FiFL

185C
12F 4

ASCENDANT # @@
FIPREP Q3DA
FiLWOS @70E
F3COPY @BAC
FISTAT @CB2

FiuM

F3FL

105¢C
12F4

ASCENDANT & @}

ASCENDANT # 81

ASCENDANT # 24

ASCENDANT # 04

82
e
ad
[}
a1
o
3
(3%
(2]
“a
w4
v4
ud
w4
b1

al

0o
04
(33
[

04

¥l

(33
v

wa

04

ve
w4

va

('3}

'EY

14EC $SEGF2
14EC SSEGF6
14E2 XSEGF3
@UBC FUIASCT
9518 FICL
©20A FICLOR
VEC4 F3I0D
1076 FiOM
W1CA FIER
21C4 FIERLY
12Fa4 FiF|
126C FIFX
15C6 FIM
@BCC Fi1luB
WdE2 FI1UP
AC2A FI1I0RY
15EE F3lX
851C FiL2
VD78 FIMESS
0162 FiPA
V782 FIRACL
1386 FiRN
130C FiRS
1638 Fi84
2136 F3ST
ACCA FESTAT
4292 F 35w
1244 F3T3
143E FITRA
8242 SEGF1Q
1528 SEGFS

In this example we can see that segment 1 is overlaid by segment 4 and the segment
2 by segments 3, 5 and 6.

If not all modules were kept in the user library, also the following sequence is
accepted, e.g.:

HSF RONTF
NOD M1
INC SEGFUY
NOD N2
HSF SFGF2
NOD NP
INC SEGF3
NOD N{
INC SEGF4
NOD N3
HSF SEGFS
NOD N3
INC SEGF6
OLE M

The contents of the /L file may be kept with a KPF command.
If a KPF /O is given for the /O file containing NOD’s, the modules on this file are
catalogued without taking care of the NOD’s.

Non-segmented programs

If the user wishes to produce a non-segmented program, which usually are small
programs, the Overlay Linkage Editor operates as if all modules, placed on the /O
file by means of ASM, INC, FOR or HSF commands but no NOD commands are
used to separate the modules, are a segment of level 0. No link blocks or segment
loader are added to the load module.

4-21

PART 5 LINE EDITOR

5-1

Introduction

User and system programs must be maintained regularly. This means that new
data has to be included and old data to be deleted.

The Line Editor allows to update a source program or user data on a line level
as well as on a character level.

The edited output file is written as a temporary /S file. If /S already exists a
new assignment is made and the old /S is overwritten.

In order to keep the updated file the user must not forget to terminate
updating with a KPF command.

5-3

1 Processing

Editing sequential source files or text by means of the Line Editor takes place
in two phases:

— definition phase

— execution phase.

Definition phase

When the Line Editor is called with the LED control command it is flagged as
being in definition phase. At this phase, which lasts until an Execution message
is given, the user may specify by means of the !'"CH message, which character
strings, being the same and appearing throughout the module, have to be
changed in another character string no matter how many times this particular
character string to be updated is encountered. This message which may be
typed as many times as necessary with different parameters, is pre-stored in
memory. The relevant Definition phase messages are executed before the
relating modified file is output.

When the user requires the immediate listing of all lines with a specific
character string he may type in the !'LS message.

The definition phase is closed i.e. no more Definition messages may be entered
as soon as the first Execution message is typed in.

Execution phase

Messages typed in at this phase which is started by any of the Execution
messages, are immediately executed the moment they are typed in and LF CR
is given. These messages allow to insert any number of lines, or replace a
character string in a line.

LINE EDITOR COMMAND

Before the user may start editing his files he must call the Line Editor by
means of the following CCI command:

LED..<name>|[,<file codel>[,<file code2>1]|[,/S[, <file code2> 17 [, XX]
where:

<name > name of source module or user data file to be edited

<file codet > output file code for edited file. If this parameter is used
the type of file is implicitly UF.

< file code2> file code from which Editor messages are read.

<XX> 2 alphanumeric characters which will be used instead of!!

preceding each command.

5-5

Note: when working with UF type of files all records are output with 80
characters

If no parameter follows <name > it is assumed that a source program is to be
updated and that commands are read from /EQ. When <file code 2> is
assigned to the operator’s typewriter the characters L: are printed before
reading any record.

When this command is accepted the Line Editor will type out L: on the
typewriter log. The user may reply by any of the Control Messages he
considers necessary.

He must edit his module in an ascending order of line numbers.

CONTROL MESSAGES

Line number: decimal number ranging from 0 to 9999 included.

A character string consists of a number of characters; commas and blanks
included. By delimiting it by two $$ signs preceding and terminating the
characters the user may determine the length of the character string in his
control message.

Example:

..The user must not forget™ . . .

can be changed in ,,should keep in mind™ . . .

as follows:

"RE_ <line number>,$ $ must not forget$ $ should keep in mind$ $

Definition phase message

"CH_$ $character string 1 > $ $ <character string 2> $ $
This message is used to have <character string 1> replaced by
<character string 2> wherever string 1 appears in the module no
matter how many times it is encauntered.
The message is pre-stored in memory but not yet executed. More than

one !'CH message may be typed in at definition phase.

NOTE:Be aware that, when using !'RE later on, the statement to be changed by !'!RE
may already have been changed by !!CH.

"'LS.$ $ <character string>$ $
This message causes an immediate listing of all lines (of the input file)

containing this character string on file code /02. The operation is
terminated when the :EOF mark is encountered.

5-6

Execution phase messages

N[<line number >], <name >, <line no a>[,<line no b>1]

The lines indicated by <line no a> thru <line no b>, both included, of
the file with name <name> on the Auxiliary file are inserted
immediately after the <line number > of the current input.

If <line number > is omitted the lines are inserted after the current line
of the main input file.

Records of the Auxiliary file may be altered by the !'CH commands, if
any.

"RE_ <line number >,$ $ <character string 1> $ $ <character string 2> $ §

This message is used to replace in the line with line number <line
number > <character string 1> by <character string 2>.

If <string 2> is longer than <string 1> the last characters of the input
line are truncated.

If <string 2> is shorter than <string 1> blanks are added to make a
record of 80 characters.

k is possible to write new lines immediately after this line. An !!IL command
for this line number is not possible.

'DL. < line number 1>[, <line number 2>

The line, specified by <line number > is deleted or all lines from <line
number 1> to <line number 2> (both included) are deleted.

All the following lines if not beginning with !! are inserted after the
deleted line. Deleted lines are listed on /02 file and are not altered by
''CH commands.

L[<line number 1 >1]

"EN

This message allows to insert records after the current line, (parameter
<line number > absent), or to insert lines after the specified line number.
The Package continues inserting lines until the next control message.
Inserted Lines are listed on /02 file and are not altered by !'CH
commands.

An !"IL command cannot be given for the same line number as used by the
preceding 'RE command.

This control message terminates the updating. The remaining records of
the input file are copied on the output file. They may be changed by !'CH
command. This message or the message !!AB must be the last control
message.

5-7

'"AB
This control message aborts the current update and the output file is
scratched. The user may gain control on the operator’s typewriter to
enter a correction (only if not under batch processing mode).

The last command to be typed in must be the KPF command in order to keep
the updated file.

5-8

Messages

Message
FILE NAME ERROR
FILE NAME MISSING

INPUT FILE CANNOT BE ASSIGNED

/S CANNOT BE ASSIGNED

INVALID FILE CODE

FILE CODE NOT ASSIGN

TOO MANY PARAMETERS
DSK INPUT ERR,
UPD ABORTED
DSK OUTPUT ERR,
UPD ABORTED
UNKNOWN COMMAND,
[TRY AGAIN]

1/0 ERR ON LAST RECORD,
[TRY AGAIN]
SEQUENCE ERR,[TRY AGAIN]

SYNTAX ERR, [TRY AGAIN]

AUX INPUT CANNOT BE ASSIGNED
[TRY AGAIN]

CMND NOT ALLOWED IN EXE MODE

[TRY AGAIN]

Meaning

The specified name in the
message contained an error.

The specified name cannot be
found on this disc.

This error message is followed
by a message explaining the
error.

This error message is followed
by a message explaining the
error.

The file code specified does not
belong to the input device from
which the control messages are
input.

The file code of the message
input device must have been
specified beforehand by means of
ASG.

Too many parameters specified.
Line Editor cannot read from
disc.

Line Editor cannot write onto
disc.

The introduced control message
is not accepted as it was not one
of those described under
Processing.

An 1/0 error occurred.

The line numbers in the control
messages are not in ascending
order.

The introduced control message
or the newly typed in line,
contained a syntax error.

The auxiliary file used in JN
command cannot be assigned.
This command cannot be used in
the execution phase.

5-9

TABLE O'FLOW, [TRY AGAIN]

EOF, UPD TERMINATED

EOF IN AUXI INPUT

The character string table is
overflowing.

The :EOF mark has been
encountered on the input source
file before reaching the specified
line, thus terminating the update
process.

The :EOF mark has been
encountered from the Auxiliary
Input. The JN command is
terminated but the operator
continues.

When the message TRY AGAIN is printed the user has the possibility of
correcting the previous command or data record from /01. If CR is typed in,
the input is resumed from the normal input command file.

In batch processing mode the message TRY AGAIN is not printed and the job

is terminated.

5-10

PART 6

DEBUGGING PACKAGE

6-1

Introduction

The Debugging Package is used to check and test programs written in Assem-
bly Language.

After the user’s source program has been assembled the resulting object pro-
gram, with its symbol table if a STAB directive has been used, must be loaded
on the /L file by the Linkage Editor.

The Debugging Package loads a program from a catalogued Load module file.
The syntax of the Debug calling command is: DEB_[<name>1], where
<name> is the name of the program to be debugged.

Once the Package is called the user may set breakpoints where the Package
will suspend execution of the user program to be tested and await further com-
mands. This allows the user to check his program section by section. He may
examine the contents of any memory location and modify those lying within
the program’s boundaries or he may test the contents of register Al thru Al4
before starting the execution or during breakpoint halts.

The Debug Package is not reentrant, therefore it is not possible to test a main
program and its scheduled labels simultaneously. It is allowed to define break-
points in scheduled labels.

By using the Debugging Package the user is able to test a program rapidly and

should a bug be detected alterations are quickly made after which the correct-
ed section may be executed.

6-3

1 Processing

In Part 1 was described how the programmer could keep a module’s internal
symbol table by including the STAB directive.

The inclusion of that table allows the user, during debugging, to address loca-
tions by using the symbols pertaining to the locations.

In the LKE command the user was given the option DE or DS permitting him
to include in his linked modules either solely the internal symbol tables (DS) or
the symbol tables together with entry points (DE).

The latter feature permits to debug several related subroutines simultaneously.
If a symbol is declared as entry point in a module the symbol is referenced in a
different way as the internal symbol (see Chapter 2 Parameter syntax).

Locations in memory may be addressed in three ways:
— absolute

— relative

— symbolic

A location is addressed absolute as follows:
1) take the absolute load address printed on the typewriter log after having
called the Debugging Package.
2) add the relative address of the location as printed on the Linkage Edit map.
or
3) step two can be replaced by the following:
— add the relative address of the location as printed on the assembly listing
of the program to be debugged.
— add 8 i.e. the first four words of the load module containing information
for the Debugging Package must be taken into account by the first mod-
ule at link-edit time.

The relative address of a memory location is found as follows:

1) — take the location’s relative address as appearing on the assembly listing
— add 8 (see absolute addressing)
or

2) — take the relative address as printed on the map after link-edit

Symbolic addressing takes place as follows:

DS option specified

— take the symbol table’s name and specify a symbol which may be followed
by a positive or negative decimal number indicating a displacement relative
to that symbol.

DE option specified

— specify an entry point followed by a positive or negative decimal number

— or the function as specified under DS option.

Refer to section ‘Parameter syntax’ for more details.

6-5

On-line/Off-line

The Debugging Package allows on-line as well as off-line operation:

On-line: a Debug command is executed immediately after having terminat-
ed with LF CR. All commands described in chapter 2, except the
IF command, are accepted in this mode which begins immediately
after having called the Package or when a breakpoint terminated
by a RT command has been executed.

Off-line: mode which is entered when a breakpoint is defined. The user may
now type one command or a number of commands which will be
executed when the user program is started and reached the spe-
cified breakpoint. The string of commands pertaining to a break-
point must be terminated by either a GO or a RT command. The
user program’s execution is suspended during processing of the
commands.

Input/Output

Input

Input to the Debugging Package consists of either commands or of data. Com-
mands are usually input from the operator’s typewriter when the Package re-
quests input after having typed D: on the typewriter log. ’
One command, Cl, permits to read commands from either the card reader or
the punched tape reader.

The command RE allows to read data from a specified device. This is particu-
larly useful when the contents of buffers have to be changed or filled. The file
code of the respective devices must have been assigned before calling the
Package.

If commands are read from a device other than the typewriter and the input
command is erroneous, this command with error indication and error message
is printed on the typewriter log. The correct command may be typed in from
the operator’s typewriter after D: has been printed on the log.

The following commands are read again from the assigned input device.

Output

The output is normally directed to and printed on the typewriter log. However,
the output may be directed to another output device by means of the CO com-
mand provided the file code was correctly assigned before calling the Debug-
ging Package.

Commands typed in from the typewriter are copied on the line printer.

Note: If the Monitor aborts the program to be debugged the Debugging Pack-
age keeps control. The Program Status Word is printed on the typewri-
ter log and the line printer, followed by the relative abort address and
the print-out of the contents of 14 registers. On the line printer, or on
the typewriter log if the output was directed to TY, a memory dump
takes place of the relating area.

6-6

2 Commands

A command consists of two ASCII characters which may be followed by a
blank and one or more parameters. Parameters are separated by a comma.

If a command is terminated by a full stop another command (or commands)
may follow on the same line but may not continue on the next line.

Each command, or the last command of a line if more than commands are spe-
cified on one line, must be terminated with LF CR.

Parameter syntax:

<memory reference > ::= <absolute address >
<relative address >
<symbolic address >

where:
< absolute address>::= / <up to 4 hexa digits >
In IF command: M. <hexa number >
<relative address > @ <up to 4 hexa digits>
< symbolic address > 1. when DS option is specified:
$ <symbol table name> & <label > + <decimal
number >
2. when DE option is specified
$ <symbol table name>& <label > + <de-
cimal number >
$ <entry point > + <decimal number >
<register > R <two digit decimal number >
<constant > / <up to 4 digit hexa number >

6-7

BREAKPOINT DEFINITION
syntax: AT <memory reference >

The breakpoint facility provides a means of suspending the execution of a user
program at any point. To set a breakpoint the user types AT followed by the
absolute, relative or symbolic address of the word where he wants the program
to stop.

Once the breakpoint is set it switches the Package to the off-line mode thus
permitting to define a command or string of commands which are to be execut-
ed when the running user program reaches the location specified in the break-
point.

The breakpoint’s absolute address is printed when it is executed: BP: absolute
address.

Breakpoints are kept in a table. The maximum number of breakpoints allowed
in this table is 8. Once a breakpoint is executed or when the user does not con-
sider a breakpoint necessary anymore it may be deleted from this table by the
command DB.

This permits to use more than 8 breakpoints in a debug run though only 8
breakpoints can be present in the table at the same time.

Addresses specified in breakpoint definations need not to be in an ascending
order, so the user may first define an address at the end of the program and
then one at the beginning if he wishes to do so.

During a debug run a breakpoint may be defined only once, unless the break-
point is deleted.

When a breakpoint is reached the instruction to which it points is executed.
The last command of a string of commands pertaining to a breakpoint must be
either GO or RT, concluding this breakpoint definition.

Restrictions

The breakpoints defined may not:

— be modified by the program

— refer to DATA defined text (the BP is not executed)

— refer to a LKM (or MLK) instruction

— refer to an address defined in an EX, EXK or EXR instruction

6-8

DELETE A BREAKPOINT
syntax: DB._. <memory reference >

This command is used to delete a breakpoint and the commands defined to be
executed at this breakpoint.
A breakpoint can be deleted from the breakpoint definition table at any time
except when it is being executed.

D:AT SSYM3LFOLI1

DDA Rl

D:GO

D:AT SSYMBEFOL22

1

SYMROLIC.REF . ERROR

D:AT $SYVRRFOL2

D:DR R2

—————&® D:D3 $SYMB&FOL?2

D:AT $SYMBE&FOL3 e«—
D:DR R3
D:GO
breakpoint deletion
D:AT $SYMRB&FOL4
D:Dr R4

DsaT

D:DRB $SYMBEFOL3 -
De/s/ start of program execution
1210 (printed by user program)

BP: 39A8
Al =3132

13383
3P: 8A4C

A2 =3833
— ap CANNOT BE DELETED

1453 i
—_— » no prirt of $SYMB&FOL3
1638

B8P: 3A74
A4 =3130

DX
S:

Example 6.1
6-9

DUMP MEMORY
syntax: DM_. <memory ref 1>, <memory ref 2>

Through this command the user may examine the content of a memory area
from and including <memory ref 1> thru <memory ref 2>.

The dump takes place on the operator’s typewriter unless otherwise specified
by the CO® command beforehand.

The dump is presented as 8 words per line. Each line is preceded by an absol-
ute address (multiple of /10). The last line of the dump is filled up to the eight
word of that line, with words immediately following <memory ref 2>.

The underlined values are in the requested area.

D:DM /6511576528
6510 7D84 F4A5 8322 F6DE 2020 5245 5345 5256 " RESEARV
6520 4544 2020 4ES5 4D42 4552 2055 4E4B 4E4F ED NUMBER UNXNO

Example 6.2

WRITE MEMORY

syntax: WM., <memory ref>, <constant 1>[, <constant 2> ..., <con-
stant n>]

This command permits the user to substitute the content of a memory location
by an other value or, if more constants are specified, as many memory loca-
tions, from <memory ref > on, as there are constants specified.
The locations’ contents must be within the program boundaries.

DsDM /6D08,/6D12.¥WM /76D08,/1234,/5678.D /6D08,/6D0A

6D00 444F 4320 5245 5620 5041 4745 2033 3520 DOC REV PAGE 35
6D10 ODOA 3131 3632 3320 5038 3535 4D20 5359 11623 P855M SY
6D00 444F 4320 5245 5620 1234 5678 2033 3520 DOC REV 4V 35

Example 6.3

DUMP REGISTER
syntax: DR.. <register>[, <register n>]

This command dumps, in hexadecimal format, the contents from 1 to n regis-
ters. <register> may be any of the user registers Al thru A14 (see parameter
syntax).

If no parameters are specified the contents of all registers, except for the P and
A15 registers, are dumped.

If only one parameter is specified the contents of that register is dumped.

If both parameters are present the contents of those registers, both specified
included, are dumped.

The dump is given on the typewriter log unless otherwise specified in the CO
command.

D:DR A1
Al =0000

D:DR R1,RS
Al =0000 A2 =0000 A3 =0000 A4 =0000 A5 =0000

DtDR RIS

\i
PARAMETER ERROR

Example 6.4

WRITE REGISTER
syntax: WR._. <register >, <constant 1 >[, <constant 2> ..., <constant n>]

The content of the specified register will be changed to the value of the first
constant or, if more constants are specified, a number of consecutive registers
is loaded with the values of the same number of consecutive constants. The
first register of the range is the register specified in this command.

D:DR Rl.,kr4
Al =0000 A2 =0000 A3 =0000 A4 =0000

D:WR Kl1,/0011,70022

D:DR R1,R3
Al =0011 A2 =0022 A3 =0000

D:DR Rl,F4
Al =0011 A2 =0U022 A3 =0U00 A4 =000U

D:WR R3,/0033,/0044

D:DR Rl,R4
Al =0011 A2 =0022 A3 =0033 A4 =0U044

Example 5.5

D:AT $SYMB&FOLL!
D:DR RI1,R4
Divk H1,/0066,/0077,/0012

D:DR Rl,ky4

K BwED6
Al =3132 a2 =3130 A3 =3132 np4 =315
Al =0D66 A2 =UUT77 AL =VULlZ Qg =81 au

Example 6.5

CHANGE INPUT DEVICE
syntax: Cl_./ <file code >

When this command is given all further commands are read from the device
with the specified file code.

Input devices other than the teletype may be the card reader or the punched
tape reader. Their file codes must be assigned before the Package is called. In
order to return the input of commands to the operator’s typewriter the com-
mand Cl/EO must be given.

6-12

S:ASG /ELl,PR20

S:DEB DOC4

DEBUG IS GOOD FOR YOU
YOUR LOAD ADDKESS = 6504
D:AT $SYMB&FOL?2

D:Cl /EIl

D:RT

D://s

1383

BP: E9FE

Al =3133 AZ =3833 A3 =3133 a4 =3130 A5 =0000
Al =3133 A2 =FIFl A3 =1234 A4 =2345 7S =6161

D:
DR Kl ,R5
WR R2,/F1F1,/1234,/2345,/6161
DR Kl,RS
cl /EO
This was punched on tape
Example 6.6
CHANGE OUTPUT DEVICE

syntax: CO._./ <file code >

This command directs the output, from the time the command is read, to the
output device with the specified file code.

This file code must have been assigned before the Package is called.

If output is to be returned to the operator’s typewriter the command CQ with
the typewriter file code must be given.

Whether the command is given on-line or off-line does not affect its operation
i.e. the output device remains the specified output device until a new CO com-
mand is given.

6-13

RETURN TO ON-LINE MODE
syntax: RT

This command concludes a breakpoint definition.

When the user program runs it will stop at the address defined by the break-
point of which RT is the termination. The Debugging Package resumes control
and types out D: on the typewriter log thus switching to on-line mode.

The user may now type in new commands. In this way it is possible to react im-
mediately on the results of a breakpoint execution.

CONTINUE EXECUTION
syntax: GO_[<memory reference >

This command concludes, as RT, a breakpoint definition. The difference of
both commands is clear when the user program is executed and the breakpoint
belonging to G@ is reached.

The breakpoint’s absolute address is printed or punched and commands belong-
ing to the breakpoint are executed. When the G@ command is read control is
not returned to the operator’s typewriter, as with RT. The execution of the
user program continues until a new breakpoint is encountered.

In this case the user has not be possibility to react immediately on a break-
point’s execution results.

If <memory reference > is specified the user program will continue at the spe-
cified address which must be within the program’s boundaries. If <memory re-
ference > is not specified the execution resumes at the address following the
breakpoint.

In example 6.7 two breakpoints are specified. One terminated by GO and the other
one by RT. The first breakpoint is printed on the typewriter log as the CQ
command was not yet read. All other output is printed on the line printer log. After
RT the user may input another command.

CONDITIONAL EXECUTION

syntax: IF_[<memory ref>]|<register]>|=|<[<memory ref>|<regis-
ter>| <constant>]

This command may only be used after an AT command. It allows a conditional
execution of the command string attached to this breakpoint.

The content of an address or register is compared with the content of another
address, register of constant.

If the condition specified is true the command string is executed. If not the user
program is restarted (implicit G® command).

If <memory reference > is an absolute address then <memory reference >
must be specified as M. <hexa number >.

6-14

D:AT $SYMB&FOL4
D:CO r2

D:DM /651A,/6526
D:GO

D:AT $SYMB&FOLS
D:DM /651A,/6526
D:RT

D:s/

1688

BP: 6CE4

NUMBER UNKNOWN
1835

D:RX

S:

Example 6.7
TRACE

syntax: TR, <2 ASCII char >

This command can be used to check a condition after a branch instruction
which may cause the user program to enter a loop.

The two ASCII characters specified are printed out each time the program
reads the breakpoint to which this command is attached.

Restriction:

The ASCII characters may not be

— a space

— a full stop

YOUR LOAD ADDRESS = 6504

DtAT /6CA8
D:TR LO
D:GO

D://

BP: 6CA8
Lo

BP: 6CAS8
LO

BP: 6CAS
LO

BP: 6CAS8
Example 6.8

6-15

READ FROM EXTERNAL DEVICE
syntax: RE_./ <file code >, <memory reference >,/ <no of characters>

Through this command a number of characters may be read in a buffer whose
first address is <memory reference>. The data is read from the device with
the specified file code.

When this command is given a standard read is sent to the monitor with the
specified address and number of characters.

The number of characters must be specified hexadecimally.

The message READ is printed on the typewriter log when the user requests a
record to be read from the typewriter.

START USER PROGRAM

syntax: //

This command must be used to start the execution of the user program after
having defined one or more breakpoints. The user program runs until a break-
point is encountered and commands defined at that breakpoint are then execut-
ed by the Debugging Package.

This command has the same function as G@ <start address> when the latter
command is used on-line.

EXIT

syntax: RX

This command causes an exit from the Debugging Package and switches con-
trol back to the Control Command Interpreter which types out S: .

6-16

|

Error Messages

The following error messages are output when an illegal condition occurs.

MESSAGE

UNKNOWN BP

BP DOUBLE DEFINED

REFUSED IN ON-LINE MODE

REFUSED IN OFF-LINE MODE

BP CANNOT BE DELETED

BP TABLE OVERFLOW

NO BP ON LKM/MLK

PARAMETER ERROR

SYNTAX ERROR

MEANING

— the Package is asked to delete a break-

point which has already been deleted

— the DB command contains an incorrect

address.

— the breakpoint with the specified ad-

dress already exists in the B P table.

— the IF command is given not imme-

diately following an AT command.

— an attempt is made to define a new

breakpoint without having terminated
the previous one by a GO or RT com-
mand.

— the current breakpoint cannot be delet-

ed.

— the BP table may not contain more

than 8 breakpoints. Delete from the ta-
ble some breakpoints already executed
or considered no longer necessary.

— the breakpoint may not point to a

LKM or MLK instruction.

— this message is printed when an illegal

parameter is specified.

— the syntax in the command is erro-

neous.

6-17

MESSAGE MEANING

FILE CODE NOT ASSIGNED — the file code specified was not assigned
before the Debugging Package was cal-
led.

COMMAND UNKNOWN — the command given does not belong to

the list of commands discussed in the
previous chapter.

SYMBOLIC REF. ERROR — the symbolic reference given does not
exist in symbol table.

NO START ADDRESS — start address missing in the module to
be debugged

COMMAND TABLE OVERFLOW — not enough room to record the com-
mand string in the command table

INVALID ADDRESS — relative address not within program
limits

6-18

PART 7

ROM IMAGE GENERATOR

7-1

Introduction

ROMIMAGE is a program by means of which punched tapes are generated
containing the memory image of a program to be stored in Read Only Memory
chips.

ROMIMAGE may be run under control of the Disc Operating Monitor or as a
Stand Alone program (the latter is described in P800M Programmer’s Guide 1,
Volume VII).

The produced punched tape is used as input for the Data 1/O device which reads
it and writes a copy of it in the ROM Chip(s).

The minimum configuration required for execution of ROMIMAGE under DOS is:
— CPU + 16k words of memory

— 1 disc unit

— 1 operator’s console

— 1 paper tape punch

— optionally, 1 tape reader

— optionally, 1 line printer

1 General Principles

As a basic rule, it can be stated that the location of the ROM chips on the PC board
is directly related to their memory layout as represented in the software:

0 l 7 8 y 15
LA, 1 l t 1! l | I length
depends
0

34 78 1 12 {5 0O Size
BRI |1i"] |

chip

of ROM
chip

nnn

On the tape, each chip is identified by a number:
— for 8bit chips: x and x’ respectively
— for 4-bit chips: x, x’, x” and x” respectively.

For each chip a punched tape with memory image is produced, after the lower and
upper boundaries of the related ROM secton in memory have been specified.

Tape Format

To facilitate identification of the punched tape and the ROM chip it relates to,
ROMIMAGE punches an identifier (the chip-number) at the beginning each tape,
separated from the data blocks by 60 blank characters and 60 rub-out characters.
This identifier is not punched as a coded character, but as a character image, so that
it can be easily recognized by the user, though not by the 1/O driver:

I\

This identification (here for chip 1) is always punched automatically.
If the user wishes to add personal identification, he can do so by means
of a WRITE command.

o
°0
00000000
oo
00 C

{

7-5

The length of a data block depends on the size of the chip (at least 512 words).
The format of the code as punched in the tape is described below.

A tape generated by ROMIMAGE will look as follows:

R
X
L

(| o1 7/ T 9 oo /
o9Q 290 oo /
//// N7/
S / 3
L1 8y L s 1, 7/
possible 60 blanks data 60 rub-outs 60 blanks data
WRITE + 60 rub- + 60 blanks + 60 rub-
message outs (trailer) outs
(1leader) (1eader)
memory image possible memory 1ma$e
for chip 1 WRITE for chip 1
message

Code Format
The memory image can be punched in ASCII BPNF, ASCII hexadecimal or binary
code format.
— BPNF code example for 8-bit, 512-word ROM chip:
<leader> : 60 blanks, followed by 60 rub-out characters

<SOH character >

BPPNNNNNPF : character field 0
<space>
BPNPNPPPPF : character field 1
<space>
etcl.
BNPiNPNNNNF : character field 511
<space>
< trailer > : 60 rub-out characters, followed by 60 blanks

7-6

For 4-bit ROM chips, only 4 bits are coded between B and F
— Hexa code example for 8-bit, 512-word ROM chip:

<leader >

<SOH character>
<hexa digit>
<hexa digit> ;
<space>

<hexa digit>
<hexa digit> ;
<space>

etc.

|
<hexa digit>
<hexa digit>

<space>

<trailer >

: 60 blanks, followed by 60 rub-out characters

character field 0

character field 1

character field 511

: 60 rub-out characters, followed by 60 blanks

For 4-bit ROM chips, there is only one hexa digit between spaces.
Binary code example for 8-bit, 1024-word ROM-chip:

<leader >

</FF>

< 8-bit binary code>
< 8-bit binary code>

etc,

< 8-bit binary code>

< trailer >

: 60 blanks, followed by 60 rub-out characters
: start code
: character field 0

: character field 1

: character field 1023

: 60 rub-out characters, followed by 60 blanks

7-7

For 4-bit ROM-chips, only 4-bit codes are punched after start code/FF.

The following rules must be taken into account:

there will be exactly as many characters in consecutive sequence on the tape, as
the number indicated by the chip size.
a leader of 60 blanks + 60 rub-out characters precedes the start code (SOH in
the 2ASCII formats,/FF in binary).
a trailer of 60 rub-out characters followed by 60 blanks must follow the last space
in the ASCII formats, the last coding in the binary format
each character field in BPNF code consists of 10 consecutive characters for 8-bit
ROM-chips and 6 characters for 4-bit ROM-chip, the first of which must be the
start character B.
Following the start character B, there are exactly 8 or 4 data characters (Ps or
Ns). The final character will be F. No other characters are allowed anywhere in
the character field.
Within the character field, P stands for Binary 1

N stands for Binary 0.
character fields are separated by a space in the ASCII formats.
the last field on the tape is followed by a space (binary format excepted) and the
trailer. No comments will be punched in between.

2 Operation

ROMIMAGE runs under control of the Disc Operating Monitor.

It can be catalogued as a permanent load module in the user library or it can be made
part of the System Disc pack. In both cases it is started by means of the CCI
Command RUN.

File Codes

With ROMIMAGE the following file codes must be used and assigned (by CCI

command ASG) by the user if they are not implicitly assigned in his system:

— Input command file code: /0A
from this file code ROMIMAGE reads all input commands and some control
data required for generation of the memory image on punched tape.

— output command file code: /0B
on this file code the ROMIMAGE commands are output.

— Input file code: /D6
this file code corresponds to the /L file code, i.e. the Disk Linkage Editor output
file code. This is one of the standard file codes, which needs not be assigned by
the user.

— output file code: /03
through this file code ROMIMAGE outputs the memory image of the load
module, read on the input file, onto punched tape. This file code must be assigned
to a paper tape punch.

— list file code: /02
on this file code ROMIMAGE lists all control messages and data which are
interchanged between ROMIMAGE and the operator. If this code is assigned
to the same device as the output commande file code, no listing will be produced.

— check file code: E1
from this file code ROMIMAGE reads the punched tape containing the memory
image of the ROM-chips (one at a time), to verify that it is identical with the
memory image on the input file /L.

7-9

3 Control Commands

When ROMIMAGE is started it outputs a sequence of commands for each of which
the user must enter the parameters to enable ROMIMAGE to generate the correct
memory image for one or more ROM Chips.

ROMIMAGE outputs the command, for example as follows:

ROM: FORMAT OF CODE

then proceeds to the next line

on which the user must type in the parameters, followed by

® A

Below, the commands and the required parameters are described.

7-11

FORMAT OF CODE

When this message is output, the user must specify the format in which the memory
image is to be written.

ROM: FORMAT OF CODE

< format>

where

<format> = BP[NF]/HE[XA BI[NARY[,I]

If BP or BPNF is specified, the memory image will be written in BPNF format (see
“General Principles”)

If HE or HEXA is specified, the memory image will be written in hexadecimal (see
“General Principles”)

If BI or BINARY is specified, the memory image will be written in binary (see
“General Principles”)

,I must be specified if the chips onto which the memory image must be written are
of the type VOL (Voltage Output Low), and the DATA 1/0 device used does not
provide the inversion toggle switches for the different input formats; in this case the
data on the Input tape must already have been inverted. Thus, with the I option
specified, ROMIMAGE inverts the Ps and Ns in the BPNF format and the Os and
1s in the binary format, whereas in hexadecimal format 0 becomes F, 1 becomes E,
etc.

Default value: HEXA

DIMENSION OF CHIP
When this message is Output the user must specify the size of the ROM chip for which
the memory image will be written.

ROM: DIMENSION OF CHIP

<size>[,<nbr of bits>]

where

<size> is specified as 0 when the chip size is 512 words
1 when the chip size is 1024 words
2 when the chip size is 2048 words

< nbr of bits> indicates the size of a word on the chip, i.e. either 4 or 8, where the
default value is 8.

7-12

LOADING ADDRESS

When the message is output the user must specify the address at which the load

module will be loaded into memory.

Note: This address differs from the lower boundary address specifying the start
of that part of the module which is to be located in ROM. The loading
address must be smaller then the lower boundary address.

ROM: LOADING ADDRESS
< address >
where

< address > is a value of 4 hexadecimal digits specifying the memory location where
the module will be loaded.

BOUNDARIES

When this message is output, the user must specify two addresses indicating the first

location of the ROM in which the memory image is to be generated and the first

free location following it. .

Note: See Note under LOADING ADDRESS. Moreover, it must be remembered
that the ROM-bootstrap which is used to start execution of programs in
ROM, supposes the first executable instruction to be located at the first
word of the ROM-block, i.e. at the address specified as lower boundary.

ROM: BOUNDARIES
< lower boundary >, <upper boundary >
where

< lower boundary> and <upper boundary> must be specified as values of 4
hexadecimal digits, the former value being smaller than the latter.

7-13

WRITE MESSAGE?

Before it punches the memory image on the paper tape, ROMIMAGE allows the
user to have his own message punched on the tape. This message is punched as an
image of the character specified on the command input file. This must be repeated
for each chip separately.

ROM: WRITE MESSAGE?

| < message > @

where

@ is typed in if no message is to be punched.

< message > is the message of which the image will be punched on the tape before
the chip identifier. Its maximum length is 12 characters.

Only the digits 0 through 9 and the letters A, B and C may be used.

CHECK?
When ROMIMAGE has completed punching the memory image of a ROM chip,
it outputs this message to ask the user if he wants the output to be verified.

ROM: CHECK
YE[S]INO
where

YE[S] is specified if verification is required. The produced punched tape must be

put on the tape reader before the command is typed in.

ROMIMAGE reads the tape and compares the input with the memory part of that

module.

NO is specified when no verification is wanted. After asking WRITE MESSAGE?,

ROMIMAGE continues to the punching of the next ROM chip’s memory image.
|
|
|

7-14

When ROMIMAGE has verified the tape and found that it is correct, it prints the
message:

ROM: CHECK CORRECT

and continues.
When an error has been encountered during the verification process, it prints the
message:

ROM: ERROR DURING CHECK

followed by

ROM: CHECK AGAIN?

If the reply is YES, the program immediately starts re-reading the tape, which is
assumed to have been put back to its starting position, for another check.

If the reply is NO, the program types out:

ROM: PUNCH AGAIN?

In reply to this message the user can type YES to have the process for the last ROM

chip restarted, or NO in which case the process for the following ROM chip, if any,
is started.

END OR NEXT BOUNDARY

This message is output when the memory image within the specified boundaries has
been punched.

The user is given the possibility to either specify the next boundaries for the same
load module or end the ROMIMAGE process.

ROM: END OR NEXT BOUNDARIES

EN[D]INE[XT]

When EN or END is typed in, the process is terminated.

When NE or NEXT is typed in, other boundaries of the same modules must be
punched. ROMIMAGE prints the message.

ROM: BOUNDARIES

7-15

Error Messages

The following error messages may be output by ROMIMAGE

— ROM: ERROR OVERLAY LM
When it has printed this message, ROMIMAGE exits after printing the END
message, if possible.

— ROM: NOT ENOUGH CORE
When it has printed this message, ROMIMAGE exits after printing the END
message, if possible.

— ROM: SYNTAX ERROR
When it has printed this message, ROMIMAGE repeats the last command, to
give the user the possibility of a retry.

— ROM: INCORRECT BOUNDARIES
When it has printed this message, ROMIMAGE repeats the last command, to
give the user the possibility of a correct retry.

— ROM: IRRECOVERABLE ERROR ON FILE XX STATUS XXXX
where X is a hexadecimal character.
When it has printed this message, ROMIMAGE exits after printing the END
message.

— ROM: ERROR DURING CHECK
this message is printed when an error is detected during the verification process
initiated by the control command ROM: CHECK. It is followed by the question
ROM: PUNCH AGAIN, to which the user can reply YES or NO. See under
command ROM: CHECK.

7-16

PART 8

UTILITY PROGRAMS

8-1

1 Loaders

The P800M computes permits the user to load and run an Initial Program
Loader by simply pressing the IPL button on the front panel. When doing so
the contents of a 64-word Read Only Memory (ROM). which has been
preprogrammed with a standard bootstrap, is read into the CPUs memory
where it is-executed.

Next the IPL, which is punched in front of the system program or which may
be an independent tape or may be written on cassette tape, magnetic tape or
on disc, is automatically loaded and run from one of the following devices:

— operator’s typewriter (4 X4)
— punched tape reader

— fixed head disc

— moving head disc

— magnetic tape

— cassette tape.

However, before the button is pressed the user must set the following
parameters on the data switches:

bit0 = 1 1PL is to be loaded from ASR (4 X 4)
0 [IPL is to be loaded from other device
bit1 = 1 [IPL from disc
0 IPL from other decive
bit2 = 1 moving head disc
0 fixed head disc
bit3 = 1 Programmed Channel transfer
0 [/0 Processor transfer
bit4 = 7 control information for control unit during execution of CIO Start

sent by the bootstrap. Specify the type of device:
TY = 0001 X1215 =0011 (phys. sect address)

TK = 0111
MT = 0010
bit8 = 1 multiple device control unit

0 single device control unit
bit9 = 1 X1215 disc (P824-001 CDD disc)
10 — 15 device address of device from which the IPL is loaded

When the IPL is loaded from disc the processing of bootstrap and IPL takes
place as follows:

— the bootstrap loads sector 1 (physical sector 3) from disc and copies it in
location /80 onwards.

— apart of the IPL receives control at location /84 and:
— computes the memory size
— shifts the remaining part of the IPL into the top of memory and

gives control to it.

— this part of the IPL loads the Supervisor, located in sector 12 and higher,
from disc and gives control to the initialization part of the monitor
(INIMON).

Loading procedure

— prepare device from which the IPL is read

— set the relevant information on the data switches
— push the IPL button. The IPL is now read.

84

2 Dump Program

The ASCII dump program allows to have an ASCII memory dump in hexa-
decimal format on the line printer or on the operator’s typewriter. The
program is delivered on paper tape in 8 +8 or 4 x4 format and is preceded by
an IPL.

The IPL is loaded by pushing the IPL button on the control panel. The user
may now specify in register A9 the loading address of the dump program.
Default value = 0000.

Next push the RUN button to load the dump program. When the reading stops
to the user must load register A8, A9 and A10 with the following information:

A8 to be loaded with the address of the device onto which the dump will
take place, e.g./10 for the operator’s typewriter or /07 for the line
printer.
If the device is connected via the programmed channel bit 0 of register
A8 must be set to 1.

A9 to be loaded with the first address of the area to be dumped

A10 to be loaded with the last addres of this area.

Press the RUN button to activate the dumping.

8-5

APPENDICES

A-1

Appendix A File Codes

01 Operator’s typewriter

02 Print Unit

03 Punch Unit

04 - 09 Reserved

DO Catalogued procedure input

D4 /S file or library source file (Line Editor output)

D5 /0O file (Assembler output, Linkage Editor input)

D6 /L file (Linkage Editor output)

D7 System object file (library)

D8 User object file (library)

D9 - DF Reserved for system use

EO Control Command Input

E1 Source Input

E2 Object Input

EE Catalogued procedure output

EF System operator’s typewriter

FO- FF Logical addresses of disc unit. They are reserved for system
use.

Note: OA - CF may be used after an assignment
01, 02, 03, EO, E1, E2, EF may be used without having been assigned
in a previous ASG control command.

The file codes 04 to CF may be used to address user files.
File codes OA to DF are scratched after SCR of BYE.

A-3

Appendix B Non-ASCIl format on paper tape

The information on paper tape may be in object format

Object format

Object format information is organized in logical records called clusters. This is
the format as output by the Assembler. Linkage Editor and Compilers. Object
format also is the input for the Linkage Editor, IPL and Basic Monitor Loader.
8+ 8 format.

Punched format of paper tape

The punched format of information on paper tape determines from which
device the punched tape may be read. The formats are:

— 8+8 format

— 4X4 format.

8 + 8 format

Punched tape of this format can only be read from the high speed paper tape
reader and not from the ASR paper tape reader.

Each hole of the 8-hole channel represents one character bit, the rightmost one
being on the sprocket row side.

4 x 4 format

Paper tape punched in this format may be read from either the high speed
paper tape reader or the ASR tape reader. One 8-bit character requires two
rows four holes. Each row represents four bits. The first row corresponds to
the leftmost 4 bits of the character.

Tape representation 4 bits value
10 0

1tob 1to4
15to IF 5to F

Standard paper tape device handlers always accept either 8 +8 or 4 X4 format

B-1

Appendix C Object code

The object format described below is the output, on paper tape, of the Disc

Assembler and of the FORTRAN compiler.

The object code is provided in two formats:

- 8 + 8 format where the information, contained in 16-bit words, is punched
over two rows of 8 bits. This format can be read from the high speed
punched tape reader.

The first character of each record is a record identification (X’'10, X’1’ to X4,
X'15" to X'17)).

The second character specifies the number of 16 bit words in the remainder
of the record, the checksum excluded.

The remainder consists of 16-bit words punched over two rows. The last
word of each record is the checksum.

— 4x4 format where the information, contained in 16-bits words Is
punched over four rows of four bits. This format can be read from the
high speed punched tape reader and from the reader attached to the
operator’s typewriter. The first character of each record is a record
identification X'18" to X '1F’).

The second character specifies the number of 16-bits words in the remainder
of the record, the checksum excluded.

The remainder of the record consists of n 16-bit words.

The last word of the record is a checksum.

The characters in object code records are modified in the following way: add
X’10’ to zero characters and to binary characters X’5" to X'7’. Other characters
remain unchanged.

Cluster type 8 +8 format 4 x4 format
0 /10 +8 =/18
1 1 +8+/10=/19
2 2 +8+/10=/1A
3 3 +8+/10=/1B
4 4 +8+/10=/1C
5 /15 +8 =/1D
6 /16 +8 =/1E
7 /17 +8 =/1F

If the first character is # /07 (Bell),/0A (Line Feed), /0D (CR),/11 (Xon), /13
(Tape Off), /7F (Rub Out), /12 (Xon punch), /14 (Xoff punch) and <20 then it
is object code.

Only the last four bits are kept (A /F). If the value is <8 then the object code is
of format 8+8 and if >8 then 4X4. To find the cluster type 8 must be
subtracted.

C-1

In P800M Object Code there are 8 types of cluster, namely

— BLOCK DATA CLUSTERS type 0
— ENTRY POINT NAMES CLUSTER type 1
— EXTERNAL REFERENCE NAME CLUSTER type 2
— CODE CLUSTER type 3
— INTERNAL MODIFICATION CLUSTER type 4
— ENTRY POINT DEFINITION CLUSTER type 5
— COMMON LENGTH DEFINITION CLUSTER type 6
— END CLUSTER type 7

The first record of any object module is a program identification record is
ASCII format and consists of an IDENT statement which is the same as the
source statement from which it originated, followed by LFXOFF CR.

The eight types of clusters do not have the same length.

BLOCK DATA CLUSTER (0)

This cluster is only generated by the FORTRAN compiler when a Block Data
subroutine is processed. It permits the initialization of a COMMON block.

0 ‘ word count

NC n.s. character 1

name of labelled COMMON
block (up to 6 characters)

A0 2 A
absolute data words to be
ADDR 0 loaded, starting at ADDR in
named COMMON block
A A
Max. 34 words are allowed.
where:

— the first character of the first word indicates the type number of the cluster
(0).

— the second character of the first word contains the number of words in the
remainder of the cluster, excluding the checksum.

— bit 0, 1, and 2 of the second word contains the number of characters (max 6)
specifying the name of the labeled COMMON block. Bit 3 to 7 are not
relevant.

— ADDR, bit 15 = 0 indicates the relative address of the first data word to be
loaded in the named COMMON block.

C-2

ENTRY POINT NAMES CLUSTER (1)

This cluster contains a list of entry point names. Entries in this cluster have no
fixed length.
All clusters of this type are grouped and follow the IDENT.

Each entry point name is given a value in the ENTRY POINT DEFINITION
CLUSTER.

1 word count
NC (=4) n.s. N
0 23 7
A M
0 0 0
NC (=1) n.s. E
Max. 34 words
NC (=3) n.s. E
23 7
0 N T
where:

— the first character of the first word indicates the type number of this cluster
— the second character of the first word indicates the number of words in this
cluster
— NC gives the number of characters in the name
A maximum of six characters is allowed
— n.s. = not significant.

C3

EXTERNAL REFERENCE NAME CLUSTER (2)

This cluster contains a list of external reference names. These names are
referred to in the code cluster by a number; the first external reference name
encountered in the module has received number 2, the second one number 4
etc. In the remainder of the object program the externals may be referred to
by their number.

The format of this cluster is the same as for the type 1 cluster.

CODE CLUSTER (3)

This cluster contains the code words (e.g. instructions) generated by the
Assembler and Linkage Editor and the addresses from which the code words
have to be loaded into memory. Each cluster may contain a maximum of 16
code words.

3 word count

RBK: relocation bits key

ADDR: address R

EMBK: external modification bit key
Max. 34 words

code word

code word

b))

W
n
«

code word

where:

— the first character of the first word indicates the type number of this cluster.

— the second character of the first wordt indicates the number of words in this
cluster.

— RBK is a Relocation Bit Key. Bit 0 of this word is related to the first code
word in this cluster, bit 1 to the second word etc.
If a code word has its RBK bit set (to 1) this code word is relocatable. At
link edit time the relative address of the object module will be added to the
address of this word

— ADDR contains the address from which the list of code words in this
cluster must be loaded into memory.

4

If bit 15 (R) = 0, ADDR is the absolute address of the first code word of
this list (absolute program section). In that case the RBK bit is reset except
when there is a reference from an absolute program section to a relocatable
program section.

If bit 15 = 1, ADDR is the relative address, i.e. the address of the first
code word of the list relative to the load address of the module (relocatable
programm section).

EMBK is an External Modification Bit Key. As for RBK, bit 0 is related to
the first code word, bit 1 to the second etc.

If a code word has its EMBK bit set the next word in the list is not a code
word but a word that contains the number of external reference.

The purpose hereof is that the previous code word has to be modified by
the Linkage Editor by adding the numerical equivalent of the external
reference to the code word.

INTERNAL MODIFICATION CLUSTER (4)

Code words generated by the Assembler and Linkage Editor are listed in this
cluster each time a forward reference is satisfied.

Each code word in this cluster is associated with a relocation bit of a RBK as
described in cluster type 3, and an absolute or relocatable word address.

Bit 0 of RBK is related to code word 0, bit 1 to code word 1 etc.

4 word count

RBK: relocation bits key

ADDR: address 0 R

code word 0~

ADDR: address 1 R
code word 1
]
ADDR: address i R
code word i

b1
W

where:

— the first character of the first word indicates the typenumber.
— the second character of the first word indicates the number of words in this
cluster, checksum excluded.
— R, if 0 the address is absolute
if 1 the address is relocatable

ENTRY POINT DEFINITION CLUSTER (5)

This cluster contains a list of entry point names and the number they have been
given for reference purposes.

5 word count
I
NC (=4) ARNY/S N
AN
0 23 456 7
M
A
E 0 0 Max. 34 words
VALUE
s
NC (=1) ARNV S N
ZM\%
0 23 4 5 6 7
VALUE
A \ A
]
where:

— NC is the number of characters in the entry point

— R if 1, the entry point name is relocatable
if 0, the name is absolute

— S if 1, the name is the name of an internal symbol table
if 0, if not

— NAME the name of the entry point

— VALUE value of the entry point

C-6

COMMON LENGTH DEFINITION CLUSTER (6)

This cluster is output by the Assembler and by the FORTRAN compiler.
Those two can make use of a common block in which memory locations are
shared between subprogram and main program variables.

References to a common area are considered to be external references to that
common with a displacement value representing a relative address in the
common.

Since the Linkage Editor has to know the length of the common blocks the
length of all blocks are given in this cluster.

The format of this cluster is the same as for the Entry Point Definition cluster,
except that R and S are not significant, and

NAME = the name of the common block. If it is a blank common the name

is one blank.
VALUE = length in characters of the common block.

END CLUSTER (7)

This cluster is always the last cluster of a module. Its format is as follows:

7 word count

START (address) R

not significant

LENGTH of object module

ERROR FLAG

where:

— the first character of the first word indicates the typenumber of this cluster

— the second character indicates the number of words in this cluster,
checksum excluded.

— START is the start address of the object module. If R (bit 15) = 0 the
address is absolute, if 1 it is the relative starting address. If START and R
are 0, there is no start address.

— LENGTH contains the length of the object module given as an even
number of characters.

C-7

— ERFLAG is a flag indicating whether any errors have occurred during the
assembly or link-editing of the module.
If so, the number of errors is given in binary. If no errors have occurred this
word is 0.

C-8

Appendix D

ASCIl code

char

space

Re g

LCXNOOD O WN—O +>I<VA

S ATT

O w >

ASCII Intern char. set

octal
240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303

Hexa
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43

punch comb.
on punch
11,8,2
8,7
8,3
11,8,3
0,8,4
12
8,5
12,8,5
11,8,5
11,8,4
12,8,6
0,8,3
11
12,8,3
0,1

OO ~NOTUPA,WN—O
N

11,8,6
12,84
8,6
0,8,6
08,7
8.4
12,1
12,2
12,3

octal
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

TN XEg<CHNROTOZZIO AT T IOTMO 2
N
=

Bell 207
Linefeed 212
Car Ret. 215
X on reader 221
X off reader 223
Rubout 377
X on punch 222
X off punch 224
FF

ASCII Intern char. set

Hexa punchcomb.

44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52

53

54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

07
0A
0D
11
13 .
7F
12
14
0C

12,4
12,5
12,6
12,7
12,8
12,9
11,1
11,2
11,3
11,4
11,5
11,6
11,7
11,8
11,9
0,2
0.3
0.4
0,5
0.6
0.7
0.8
0.9

D-1

Index

A

Address expression
Addressing
AORG

Area reservation
Assembler. Ce
Assembly control.
Assembly Language. .
Assembly listing
Asterisk. L.

B

Blank common
Block data cluster
Branch instructions.
Breakpoint . . .

C

Character constant
Character string
Cluster . . .
Cluster type .
Code cluster.
Condition field.
Condition indicator. . .

Common length deﬁnition:
Comment field. .

D

DATA
Debugging Package
Decimal constant. .
Direct addressing
Directives.

E
EJECT 1-40
END. 1-26
Endcluster C-7
ENTRY 1-28
Entry point names cluster . . . C-3
Entry point definition cluster. . C-
EQU. 1-38
Error messages. . 2-11, 3-10
Expression 1-10
External reference 1-29
External reference

names cluster C-4
EXTRN 1-29
F
Filecodes. A-3
FORM 1-41
Format of source statements . . 1-7
G
GEN. 1-46
Glossary of terms IX
H
Hexadecimal constant. 1-13
I
IDENT. 1-25
Identifier 1-7
IFF 1-33
IFT 1-33
Indexed addressing 1-14
Indexed indirect addressing . . 1-15
Indirect addressing 1-15
I/O instructions 1-21
Internal modification cluster . . C-5
Internal symbol table 1-34

L

Label.
Labeled common.
Line Editor
Linkage Editor
Linkage control
LIST.
Listing control.
Loadmodule
Location counter.

M
Machine instruction

Objectcode.
Object module.
Object module library
Operand field
Overlay linkage editor

P

Page fault interrupt.
P-register
Predefined expression.
Programming considerations. .
Program framework
PSW. e

R
Register addressing .
Register expression.
Register to register operation. .
RES . . .

ROMIMAGE Generator . . .

RORG
S

Segment table .
Shift instructions .
Simulation
Source module.
STAB
Statement . . .
Store indicator.
Symbol
Symbol table .
Symbol generation . .

1-55
1-20
1-56
1-7
1-34
1-7
19
1-7
1-34
1-41

1-54

1-50

1-36

Notes

Notes

Comment sheet

P800OM PROGRAMMER’S GUIDE 2 - Volume III: Software Processors

Pub. No. 5122 991 27392

Name:

Company:

Department:

Address:

Telephone number:

Ext.

Comments or Suggestions:

PHILIPS DATA SYSTEMS B.V.

MARKETING GROUP SMALL COMPUTERS
P.O. Box 245, Apeldoorn, The Netherlands
Phone: 055-230123; telex: 49142

For further details contact the above address or:

Sweden

Svenska AB Philips
Data Systems
Minidatorer
Rissneleden 16
Stockholm 27

Tel. 08 830300

Norway

Norsk A/S Philips
Data Systems Division
Nils Hansens vei 2
Oslo 6

Tel. 02 679380

Belgium

Philips Data Systems SA
Marketing Group Small Computers
Anspachlaan 1

1000 Brussel

Tel. 022193900

France

Philips Data Systems
Département Mini-ordinateurs
5 Square Max-Hymans

75015 Paris 15

Tel. 01734 7759

Western Germany

Philips Data Systems GmbH
Weidenesuerstrasse 211/213
Siegen-Weidenau 21

Tel. 027 14041

Austria

Philips Data Systems GmbH
Untere Donaustrasse 11
A1020 - Wien 2

Tel. 0222 2475610

Switzerland

Philips AG
Data Systems
Binzstrasse 18
8027 Ziirich
Tel. 01442211

Great Britain

Philips Data Systems
Elektra House

2 Bergholt Road
Colchester C04-5AA
Essex

Tel. 206 5115

The Netherlands

Philips Data Systems Nederland B.V.
Bordewijkstraat 4

Rijswijk (Z-H)

Tel. 070 906720

	PG2_00_0001
	PG2_00_0002
	PG2_00_0003
	PG2_00_0004
	PG2_00_0005
	PG2_00_0006
	PG2_00_0007
	PG2_00_0008
	PG2_00_0009
	PG2_00_0010
	PG2_00_0011
	PG2_00_0012
	PG2_00_0013
	PG2_00_0014
	PG2_01_0001
	PG2_01_0002
	PG2_01_0003
	PG2_01_0004
	PG2_01_0005
	PG2_01_0006
	PG2_01_0007
	PG2_01_0008
	PG2_01_0009
	PG2_01_0010
	PG2_01_0011
	PG2_01_0012
	PG2_01_0013
	PG2_01_0014
	PG2_01_0015
	PG2_01_0016
	PG2_01_0017
	PG2_01_0018
	PG2_01_0019
	PG2_01_0020
	PG2_01_0021
	PG2_01_0022
	PG2_01_0023
	PG2_01_0024
	PG2_01_0025
	PG2_01_0026
	PG2_01_0027
	PG2_01_0028
	PG2_01_0029
	PG2_01_0030
	PG2_01_0031
	PG2_01_0032
	PG2_01_0033
	PG2_01_0034
	PG2_01_0035
	PG2_01_0036
	PG2_01_0037
	PG2_01_0038
	PG2_01_0039
	PG2_01_0040
	PG2_01_0041
	PG2_01_0042
	PG2_01_0043
	PG2_01_0044
	PG2_01_0045
	PG2_01_0046
	PG2_01_0047
	PG2_01_0048
	PG2_01_0049
	PG2_01_0050
	PG2_01_0051
	PG2_01_0052
	PG2_01_0053
	PG2_01_0054
	PG2_01_0055
	PG2_01_0056
	PG2_01_0057
	PG2_01_0058
	PG2_01_0059
	PG2_01_0060
	PG2_01_0061
	PG2_01_0062
	PG2_01_0063
	PG2_01_0064
	PG2_02_0001
	PG2_02_0002
	PG2_02_0003
	PG2_02_0004
	PG2_02_0005
	PG2_02_0006
	PG2_02_0007
	PG2_02_0008
	PG2_02_0009
	PG2_02_0010
	PG2_02_0011
	PG2_02_0012
	PG2_02_0013
	PG2_02_0014
	PG2_03_0001
	PG2_03_0002
	PG2_03_0003
	PG2_03_0004
	PG2_03_0005
	PG2_03_0006
	PG2_03_0007
	PG2_03_0008
	PG2_03_0009
	PG2_03_0010
	PG2_03_0011
	PG2_03_0012
	PG2_04_0001
	PG2_04_0002
	PG2_04_0003
	PG2_04_0004
	PG2_04_0005
	PG2_04_0006
	PG2_04_0007
	PG2_04_0008
	PG2_04_0009
	PG2_04_0010
	PG2_04_0011
	PG2_04_0012
	PG2_04_0013
	PG2_04_0014
	PG2_04_0015
	PG2_04_0016
	PG2_04_0017
	PG2_04_0018
	PG2_04_0019
	PG2_04_0020
	PG2_04_0021
	PG2_04_0022
	PG2_05_0001
	PG2_05_0002
	PG2_05_0003
	PG2_05_0004
	PG2_05_0005
	PG2_05_0006
	PG2_05_0007
	PG2_05_0008
	PG2_05_0009
	PG2_05_0010
	PG2_06_0001
	PG2_06_0002
	PG2_06_0003
	PG2_06_0004
	PG2_06_0005
	PG2_06_0006
	PG2_06_0007
	PG2_06_0008
	PG2_06_0009
	PG2_06_0010
	PG2_06_0011
	PG2_06_0012
	PG2_06_0013
	PG2_06_0014
	PG2_06_0015
	PG2_06_0016
	PG2_06_0017
	PG2_06_0018
	PG2_07_0001
	PG2_07_0002
	PG2_07_0003
	PG2_07_0004
	PG2_07_0005
	PG2_07_0006
	PG2_07_0007
	PG2_07_0008
	PG2_07_0009
	PG2_07_0010
	PG2_07_0011
	PG2_07_0012
	PG2_07_0013
	PG2_07_0014
	PG2_07_0015
	PG2_07_0016
	PG2_08_0001
	PG2_08_0002
	PG2_08_0003
	PG2_08_0004
	PG2_08_0005
	PG2_08_0006
	PG2_0A_0001
	PG2_0A_0002
	PG2_0A_0003
	PG2_0A_0004
	PG2_0B_0001
	PG2_0B_0002
	PG2_0C_0001
	PG2_0C_0002
	PG2_0C_0003
	PG2_0C_0004
	PG2_0C_0005
	PG2_0C_0006
	PG2_0C_0007
	PG2_0C_0008
	PG2_0D_0001
	PG2_0D_0002
	PG2_0I_0001
	PG2_0I_0002
	PG2_0Z_0001
	PG2_0Z_0002
	PG2_0Z_0003
	PG2_0Z_0004
	PG2_0Z_0005
	PG2_0Z_0006

