





This book is a quick reference guide to the Microsoft BASIC
language, including the BASIC-80 Interpreter, BASIC-86 Interpreter
and BASIC Compiler. If you are using the BASIC Compiler, see page
17 for language differences that may affect your programming.

SPECIAL CHARACTERS (1 means control)

- I o

O »w 1 O

v

I X

< return >
< linefeed >
< rubout >
< escape >
&0 or &

&H

Enters Edit Mode on line being typed or last line typed

Interrupts program execution, returns to BASIC command level
and types OK

Rings the bell at the terminal

Deletes last character typed

Tab. Tab stops are every 8 columns

Halts/resumes program output

Retypes the line currently being typed

Suspends program execution

Resumes execution after control-S

Deletes line being typed

Deletes line being typed

Ends every line typed in

Used to break a logical line into physical lines

Deletes last character typed

Escapes Edit Mode subcommands

Current line for EDIT, RENUM, DELETE, LIST, LLIST commands
Prefix for octal constant

Prefix for hexadecimal constant

Separates statements typed on the same line

Equivalent to PRINT statement (L? is not equivalent to LPRINT)



VARIABLE TYPE DECLARATION CHARACTERS

Storage Bytes Used
$ String (0 to 255 characters) 3+# of characters
% Integer (—32768 to 32767) 2
! Single precision (7.1 digit floating point) 4
= Double precision (16.8 digit floating point) 8

Syntax Conventions used in this book

In the syntax of statements, functions and commands, lower case items are to be
supplied by the user. “filename” means a string expression that follows the naming
convention of the operating system. “string” means a string expression and “exp”
means a numeric expression. “line” and “line number” both mean line number. “f’
is a file number or expression that evaluates to a file number. “n” means an integer.
An item in square brackets is optional. Ellipsis (... ) indicates an item may be
repeated.

COMMANDS

NOTE: The FILES, RESET, and SYSTEM commands are in CP/M BASIC-80 only.
The CP/M operating system appends the default extension .BAS to filenames used
with LOAD, MERGE, RUN and SAVE.

Command Syntax/Function Example

AUTO AUTO [line] [,inc] AUTO 100,50
Generate line numbers automatically.

CLEAR CLEAR [,[exp1] [,exp2] ] CLEAR ,32768
Clear program variables. Exp1 sets CLEAR,,2000
end of memory and exp2 sets amount
of stack space.

CONT CONT CONT
Continue program execution.

DELETE DELETE start line[-end line] DELETE 200
Delete program lines. DELETE 20-25

EDIT EDIT line number EDIT 110
Edita program line. See Edit Mode
Subcommands.



Command Syntax/Function Example

FILES FILES [filename] FILES
List files in disk directory that match FILES “*.BAS”
filename. ? matches any character. FILES “TEST.BAS”
*matches any name or extension. FILES “B:*.*”

LIST LIST [line[-[line] ]] LIST 100-1000
List program lines at terminal.

LLIST LLIST [line[-[line] ] ] LLIST 50-
List program lines at printer.

LOAD LOAD filename [,R] LOAD “INVEN"

Load a program file.
,R option means RUN.

MERGE MERGE filename MERGE “SUB1”
Merge program on disk with program
in memory. Program on disk must have
been SAVEd in ASCIl mode.

NAME NAME old filename AS new filename NAME “SUB1” AS “SuB2”
Change the name of a disk file.

NEW NEW NEW
Delete current program and variables.

NULL NULL exp NULL 2
Set the number of nulls printed after
each line.

RENUM RENUM [ [new line] [,[old line] [,inc]]] RENUM 100,,100
Renumber program lines.

RESET RESET RESET

Reinitialize CP/M disk information.
Use after changing diskettes.

RUN RUN [line number] RUN
Run a program (from line number). RUN 50
RUN filename [,R] RUN “TEST”

Load a program from disk and run it.
,R used to keep files open.

SAVE SAVE filename [,A or ,P] SAVE “PROG",P
Save the program in memory with
name “filename.” |A saves program in
ASCII. ,P protects file.



Command Syntax/Function Example

SYSTEM SYSTEM SYSTEM
Close all files and return to CP/M.
May also be used as a program

statement.

TROFF TROFF TROFF
Turn trace off.

TRON TRON TRON
Turn trace on.

WIDTH WIDTH [LPRINT] exp WIDTH 86

Set terminal or printer carriage width. WIDTH LPRINT 100
Defaultis 80 for terminal, 132 for

printer.
EDIT MODE SUBCOMMANDS
Subcommand Function
A Restore original line and restart EDIT at the start of the line.
nCc Change n character(s).
nD Delete n character(s) at the current position.
E End editing and save changes but don’t type the rest of the line.

Hstring < escape > Delete the rest of the line and insert string.
Istring < escape> Insert string at current position.

nKc Kill all characters up to the nth occurrence of c.

L Print the rest of the line and go to the start of the line.
Q Quit editing and restore original line.

nSc Search for nth occurrence of c.

Xstring <escape> Go to the end of the line and insert string.

< rubout> Backspace over characters. In Insert mode, delete characters.
<return> End editing and save changes.
<space> Move to next character
PROGRAM STATEMENTS (except1/0)
Statement Syntax/Function Example
CALL CALL variable [(arg list)] CALL ROUT (1,J,K)
Call an assembly language or
FORTRAN subroutine.

4



Statement
CHAIN

COMMON

DEF

DIM

END

ERASE

Syntax/Function

Example -

CHAIN [MERGE] filename [,[line exp] [,ALL] [,DELETE range]]

Call a program and pass
variables to it.

MERGE with ASCIl files

allows overlays.

I line exp is omitted, CHAINed
program starts with the first line.
JALL means all variables will be
passed, otherwise variables
designated with COMMON.
DELETE allows deletion of an

overlay before CHAIN is executed.

COMMON list of variables
Pass variables to a CHAINed
program.

DEF FNx[(arg list)|=exp
Define an arithmetic or string
function.

DEF USRn=address

Define the entry address for
the nth assembly language
subroutine.

DEFtype range(s) of letters
Define default variable types
where “type” is INT, SNG, DBL,
or STR.

DIM list of subscripted variables
Allocate space for arrays

and specify maximum subscript
values.

END

Stop program, close all files
and return to BASIC command
level.

ERASE variable [,variable...]
Release space and variable
names previously reserved for
arrays.

CHAIN “PROG1”,1000

CHAIN MERGE“OVRLY2",1200

COMMON A,B(),C$

DEF FNA (X,Y)=
SQR(X*X+Y*Y)

DEF USR3=&2000

DEFINT I-N
DEFSTR AW-Z
DEFDBL D

DIM A(3),B$(10,2,3)
END

ERASE A,B$



Statement Syntax/Function Example

ERROR ERROR code ERROR 17
Generate error of code (see
table). May call user ON ERROR
routine or force BASIC to handle

error.
FOR FOR variable=exp TO exp [STEP exp]
Used with NEXT statement FORDAY=1TO5STEP 2

to repeat a sequence of
program lines. The variable is
incremented by the value of STEP.

GOSUB GOSUB line number GOSUB 210
Call a BASIC subroutine by
branching to the specified line
number. See RETURN.

GOTO GOTO line number GOTO 90
Branch to specified line number.
IF/THEN IF exp THEN statement [:statement...] [ELSE statement...]
If exp is not zero, the THEN IFX<YTHENY=XELSEY=A

clause is executed. Otherwise,
the ELSE clause or next
statement is executed.

IF/GOTO IF exp GOTO line [ELSE statement...]
Ifexp is not zero, the GOTO IF ENDVAL >0 GOTO 200
clause is executed. Otherwise
the ELSE clause or next
statement is executed.

LET [LET] variable=exp LET X=1+5
Assign a value to a variable.
MID$ MID$(string1,n[,m] ) =string2 MID$ (A$,14)=“KS”

Replace a portion of string1 with
string2. Start at position n and
replace m characters.

NEXT NEXT variable [,variable...] NEXT |
Delimits the end of a FOR loop.



Statement

ON ERROR
GOTO

ON/GOSUB

ON/GOTO

OPTION

BASE

ouT

POKE

RANDOMIZE

REM

RESTORE

RESUME

Syntax/Function

ON ERROR GOTO line

Enables error trap subroutine
beginning at specified line. If
line=0, disables error trapping.
If line=0 inside error trap
routine, forces BASIC to handle error.

ON exp GOSUB line [,line] ON DATE%+1 GOSUB 20,20,40
GOSUB to statement specified

by expression. (If exp=1, to 20;

ifexp=2, to 20; if exp=3, to 40;

otherwise, error.)

ON exp GOTO line [,line...]
Branch to statement specified
by exp. (Ifexp=1, to 20; it

exp =2, to 30; otherwise, error.)

OPTIONBASEn
Declare the minimum value for
array subscripts. nis 0or 1.

OUT port,byte
Puts byte specified to output
port specified.

POKE address,byte
Puts byte specified into memory
location specified.

RANDOMIZE [exp]
Reseed the random number
generator.

REM any text

Allows user to insert comments
in program (not executed).
NOTE: “:” does not terminate a
REM statement.

RESTORE [line number]
Resets DATA pointer so that
DATA statements may be re-read.

RESUME or RESUME 0
Returns from ON ERROR routine
to statement that caused error.

Example
ON ERROR GOTO 1000

ON INDEX GOTO 20,30

OPTION BASE 1

OUT 41,16+DATAO%

POKE &23100,255

RANDOMIZE 5

REM COMPUTE AVERAGE

RESTORE

RESUME



Statement Syntax/Function Example

RESUME NEXT RESUME NEXT
Returns to statement after the
one that caused the error.

RESUME line RESUME 100
Returns to the specitied line.
RETURN RETURN RETURN

Return from subroutine to
statement following last GOSUB
executed.

STOP STOP STOP
Stop program execution, print
BREAK message, and return to
command level.

SWAP SWAP variable,variable SWAP A$,B$
Exchanges values of two
variables.

WAIT WAIT port,mask [,select] WAIT 21,1

Suspends program execution,
reads input at port until (input

bit [XOR select] AND mask)
returns non-zero, then continues
execution with the next statement.

WHILE/ WHILE exp...WEND WHILE AMT >0
WEND Execute the statements in the .

WHILE/WEND loop as long as .

exp is true. WEND
PRINT USING Format Field Specifiers
NUMERIC

Possible Field

Specifier Digits Characters Definition Example
4 1 1 Numeric field HA##
. 0 1 Decimal point #.#
+ 0 1 Print leading or trailing sign. + ##

Positive numbers will have “+"”, ### +
negative numbers will have

“w__n



Specifier

**

$$

**$

11T

underscore

STRING
!

\<spaces>\

&

Possible Field

Digits Characters  Definition Example

0 1 Trailing sign. #HHH—
Prints “—" if negative,
otherwise blank.

2 2 Leading asterisk i A
Floating dollar sign. SSHEH##
$ is placed in front of the
leading digit.

P 3 Asterisk fill and floating dollar **SH H#
sign

1 1 Use comma every three digits HH B HH
(left of decimal point only.)

0 4 Exponential format. Number #HETIT
is aligned so leading digit
isnon-zero.

0 1 Next character literal 1#.#

Single character !

2+ number of spaces \ \
character field
Variable length field &

INPUT/OUTPUT STATEMENTS

Statement
CLOSE

DATA

Syntax/Function Example

CLOSE[ [#fLI#f...]] CLOSE®6
Closes disk files. If no argument, all
open files are closed.

DATA list of constants DATA 2.3,“PLUS" 4
Lists data to be used ina READ
statement.



Statement

FIELD

GET

INPUT

KILL

LINE
INPUT

LSET

OPEN

PRINT

Syntax/Function Example

FIELD [#] f,n AS string variable [,n AS string variable ...]

Detine fields in a random file buffer. FIELD #1,3 AS A$,7 AS B$
Note: PRINT#{USING] and [LINE] INPUT#

statements to random files write and read

data into the FIELD buffer.

GET [#] f [,record number] GET #1.17*141
Read a record from a random disk file.

INPUT [;] [prompt string;] variable [,variable...]

INPUT [;] [prompt string,] variable [,variable...]

Read data from the terminal. Semicolon INPUT “VALUES”;A,B
after INPUT suppresses echo of carriage

return/line feed. Semicolon after prompt

string causes question mark after prompt.

Comma after prompt string suppresses

question mark.

INPUT #f, variable [,variable...] INPUT #1,A,B
Read data from a disk file.
KILL filename KILL “INVEN.BAS”

Delete a disk file.

LINE INPUT [;] [prompt string;] string variable

Read an entire line from the terminal. LINE INPUT A$
Semicolon after LINE INPUT suppresses  LINE INPUT “NAME";N$
echo of carriage return/line feed.

LINE INPUT #f,string variable LINE INPUT #2,B$

Read an entire line from a disk file.

LSET field variable=string exp LSET A$=“JOHN JONES”
Store data in random file buffer left LSET B$=MKS$(MAX)

justitied. Or left justify a non-disk string
in a given field.

OPEN mode,[#] f.filename[,reclen] OPEN “O” #1,“OUTPUT”
Open a disk file. Mode must be one of:

I (sequential input file)

O (sequential output file)

R (random input/output file)

PRINT [USING format string;] exp [,exp...]

Print data at the terminal using the PRINT USING “!";A$,B$
format specified. See table for format

characters.

10



Statement

PUT

READ

RSET

WRITE

Syntax/Function

Example

PRINT #f, [USING format string;] exp [,exp...]

Write data to a disk file.

PRINT #4,A.B

LPRINT [USING format string;] variable [,variable]

Write data to a line printer.

PUT [#] f [,record number]
Write data from a random buffer to a
data file.

READ variable [,variable...]
Read data from a DATA statement into
the specitfied variables.

RSET field variable=string exp

Store data in a random file buffer right
justified. Or right justify a non-disk string
in a given field.

WRITE [list of exps]
Output data at the terminal.

WRITE #f,list of exps
Write data to a sequential file or a
random field buffer.

OPERATORS

Symbol

+

MOD
NOT

AND

OR

Function

Assignment or equality test
Negation or subtraction
Addition or string concatenation
Multiplication

Division (floating point result)
Exponentiation

Integer division (integer result)
Integer modulus (integer result)
One’s complement (integer)
Bitwise AND (integer)

Bitwise OR (integer)

11

LPRINT A,B
PUT #3,4

READ I,X,A$

RSET B$="CORRECT"
RSET C$=MKS$(COUNT)

WRITE A,B,C$

WRITE #1,A%,B$



Symbol Function

XOR Bitwise exclusive OR (integer)

EQV Bitwise equivalence (integer)

IMP Bitwise implication (integer)
=,<,>, Relational tests (resultis TRUE = —1
<=,=«<, OrFALSE =0)

> = =

<>

The precedence of operators is:
(1) Expressions in parentheses
(2) Exponentiation (A T B)
(3) Negation (—X)
(4) */
(5) \
(6) MOD
(7) +,—
(8) Relational operators (=,< >,<,>,<=, >=)
(9) NOT
(10) AND
(11) OR
(12) XOR
(13) IMP
(14) EQV

ARITHMETIC FUNCTIONS

Function Action Example
ABS(exp) Absolute value of expression Y=ABS(A+B)
ATN(exp) Arctangent of the expression (in radians)  PRINT ATN(A)

CDBL(exp) Convertthe expression to a double A=CDBL(Y)
precision number

CINT(exp) Convertthe expression to an integer B=CINT(B)
COS(exp) Cosine of the expression (in radians) A=CO0S(2.3)

CSNG(exp) Convertthe expression to a single C=CSNG(X)
precision number

EXP(exp) Raises the constant e to the power of B=EXP(C)
expression

12



Function

FIX(exp)
FRE(exp)

INT(exp)
LOG(exp)

RND[(exp)]

SGN(exp)

SIN(exp)
SQR(exp)
TAN(exp)

Action

Returns truncated integer of expression

Gives memory free space not used by
BASIC

Evaluates the expression for the largest
integer contained

Gives the natural logarithm of the
expression

Generates arandom number.
Expression:

< 0 seed new sequence

=0 return previous random number

Example
J=FIX(A/B)
PRINT FRE(Q)

C=INT(X+3)
D=LOG(Y-2)

E=RND(1)

>0 or omitted, return new random number

1if expression > 0
0 if expression = 0
—1if expression <0

Sine of the expression (in radians)
Square root of expression
Tangent of the expression (in radians)

STRING FUNCTIONS

Function
ASC(string)

CHRS$(exp)

FRE(string)
HEX$(exp)

INKEY$

Action

Returns the ASCII value of the first
character of a string

Returns a one-character string whose
character has the ASCII code of exp

Returns remaining memory free space

Converts a number to a hexadecimal
string

Returns either a one-character string

read from terminal or null string if
no character pending at terminal.

INPUTS$(length [,[#] f])

Returns a string of length characters
read from console or from a disk file.
Characters are not echoed.

13

B=SGN(X+Y)

B=SIN(A)
C=SQR(D)
D=TAN(3.14)

Example
PRINT ASC(AS)

PRINT CHR$(48)

PRINT FRE(A$)
H$=HEX$(100)

A$ =INKEY$
X$=INPUT$(4)

X$=INPUT
X$=INPUT$(5,#2)



Function Action

INSTR([exp,]string 1,string2)
Returns the first position of the first
occurrence of string2 in string1 starting
at position exp

LEFT$(string,length)
Returns leftmost length characters of
the string expression

LEN(string) Returns the length of a string

MID$(string,start [,length] )
Returns characters from the middle of
the string starting at the position
specified to the end of the string or for
length characters

OCT$(exp) Converts a number to an octal string

RIGHTS(string,length)
Returns rightmost length characters
of the string expression

SPACE$(exp) Returns a string of exp spaces

STR$(exp) Converts a numeric expression to a
string

STRING$(length,string)
Returns a string length long containing
first character of string

STRING$(length,exp)
Returns a string length long containing
characters with numeric value exp

VAL(string) Converts the string representation of
a number to its numeric value

170 AND SPECIAL FUNCTIONS

Function Action

CVi(string)  Converts a 2-character string to an

CVS(string) integer (CVI). Converts a 4-character

CVD(string) string to a single precision number
(CVS). Converts an 8-character string
to a double precision number (CVD).

14

Example

INSTR(A$,“")
INSTR(3,X$,Y$)

B$=LEFT$(X$,8)

PRINT LEN(B$)

A$=MID$(X$,5,10)

0$=0CT$(100)

C$=RIGHT$(X$,8)

S$=SPACE$(20)
PRINT STR$(35)

X$=STRING$(100,"A”)

Y$=STRING$(100,42)

PRINT VAL("“3.1")

Example
Y!=CVS(N$)
A%=CVI(B$)
C#=CVD(X$)



Function
EOF(f)
ERL

ERR
INP(port)

LOC(f)
LPOS(n)

MKI$(value)
MKS$(value)
MKD$(value)

PEEK(exp)
POS(n)
SPC(exp)
TAB(exp)

USR[n](arg)

VARPTR(var)

VARPTR(#f)

Action

Returns true (—1) if file is positioned
atits end

Error line number
Error code number
Inputs a byte from an input port

Returns next record number to read or
write (random file), or number of sectors
read or written (sequential file)

Returns carriage position of line printer
(nis dummy argument)

Converts an integer to a 2-character
string (MKI$). Converts a single
precision value to a 4-character string
(MKSS$). Converts a double precision
value to an 8-character string (MKDS$).

Reads a byte from memory location
specified by expression

Returns carriage position of terminal
(nis dummy argument)

Used in PRINT statements to print
spaces

Used in PRINT statements to tab
carriage to specified position

Calls the user’s machine language
subroutine with the specified argument.
See DEF USR.

Returns address of variable in memory
or zero if variable has not been assigned
avalue

For sequential files, returns the
address of the disk 1/O buffer
assigned to file number.

For random files, returns the
address of the FIELD buffer.

15

Example
IF EOF(1) GOTO 300

PRINT ERL

IF ERR=62 THEN...
PRINT INP(21)

PRINT LOC(1)
IF LPOS(3) >60...

LSET D$=MKS$(A)
LSET A$=MKI$(B%)

PRINT PEEK(&2000)
IF POS(3) > 60...
PRINT SPC(5).A$
PRINT TAB(20),A$

X=USR2(Y)

I=VARPTR(X)

J=VARPTR(#2)



TABLE OF ERROR CODES

Code Error Code Error
1 NEXT without FOR 14 Out of string space
Syntax error 15 String too long
3 RETURN without GOSUB 16 String formula too complex
4 Out of data 17 Can’t continue
5 Illegal function call 18 Undefined user function
6 Overflow 19 No RESUME
7 Out of memory 20 RESUME without error
8 Undefined line 21 Unprintable error
9 Subscript out of range 22 Missing operand
10 Redimensioned array 23 Line buffer overflow
11 Division by zero 26 FOR without NEXT
12 lllegal direct 29 WHILE without WEND
13 Type mismatch 30 WEND without WHILE

Disk Errors

Code Error Code Error

50 Field overflow 58 File already exists

51 Internal error ) 61 Disk full

52 Bad file number 62 Input past end

53 File not found 63 Bad record number
54 Bad file mode 64 Bad file name

55 File already open 66 Direct statement in file
57 Disk I/O error 67 Too many files

16



MICROSOFT BASIC COMPILER

The following direct mode commands are not implemented on the compiler and will
generate an error message:

AUTO CLEAR CLOAD
CSAVE CONT DELETE
EDIT LIST LLIST
RENUM COMMON SAVE
LOAD MERGE NEW

The following statements are used differently with the compiler than with the
BASIC-80 Interpreter:

1. CALL
The <variable name > field in the CALL statement must contain an External
symbol, i.e., one that is recognized by LINK-80 as a global symbol. This
routine must be supplied by the user as an assembly language subroutine or a
routine from the FORTRAN-80 library.

2. DEFINT/SNG/DBL/STR
The compiler does not “execute” DEFxxx statements; it reacts to the static
occurrence of these statements, regardless of the order in which program
lines are executed. A DEFxxx statement takes effect as soon as its line is en-
countered. Once the type has been defined for a given variable, it remains in
effect until the end of the program or until a different DEFxxx statement with
that variable takes effect.

3. DIM and ERASE
The DIM statement is similar to the DEFxxx statement in that it is scanned
rather than executed. That is, DIM takes effect when its line is encountered. If
the default dimension (10) has already been established for an array variable
and that variable is later encountered in a DIM statement, a “Redimensioned
array” error results.

There is no ERASE statement in the compiler, so arrays cannot be erased and
redimensioned. An ERASE statement will produce a fatal error.

Also note that the values of the subscripts in a DIM statement must be integer
constants; they may not be variables, arithmetic expressions, or floating point
values. For example:

DIM A1(l)
DIM A1(3+4)

are both illegal.

17



END

During execution of a compiled program, an END statement closes files and
returns control to the operating system. The compiler assumes an END state-
ment at the end of the program, so “running off the end” produces proper pro-
gram termination.

ON ERROR GOTO/RESUME< line number >

If a program contains ON ERROR GOTO and RESUME < line number > state-
ments, the /E compilation switch must be used. If the RESUME NEXT,
RESUME, or RESUME 0 form is used, the /X switch must also be included.
See the BASIC Compiler User’s Manual for an explanation of these switches.

STOP
The STOP statement is identical to the END statement. Open files are closed
and control returns to the operating system.

TRON/TROFF
In order to use TRON/TROFF, the /D compilation switch must be used. Other-
wise, TRON and TROFF are ignored and a warning message is generated.

. USRn Functions

The argument to the USRn function is ignored and an integer result is
returned in the HL registers. It is recommended that USRn functions be
replaced by the CALL statement.

BASIC COMPILER COMMANDS AND SWITCHES

Format of a BASIC compiler command:

[device:] [obj filename] [,[device:] [list filename] |=[device:]source filename[/switch...]

Switches:

/E

/X

/N
/D
/S

/4

Use /E if the brogram contains an ON ERROR GOTO statement with the
RESUME <line number > statement. Line numbers will be included in the
binary file.

Use /X if the program contains an ON ERROR GOTO statement with the
RESUME, RESUME 0, or RESUME NEXT statement. Line numbers will be
included in'the binary file.

Do not list generated object code.
Generate debug/checking code at runtime.

Quoted strings of more than 4 characters will be written to the binary file as
they are encountered.

Compiler will recognize the lexical conventions of the Microsoft 4.51
BASIC-80 Interpreter. (May not be used together with /C )

18



IT Use BASIC-80 Version 4.51 execution conventions.

/C Relax line numbering constraints. Line numbers may be in any order or
they may be eliminated, but they may not be repeated. With /C, the un-
derline character causes the remainder of the physical line to be ignored,
and the next physical line is considered to be a continuation of the current
logical line. /C and /4 may not be used together.

/1Z Use Z80 opcodes wherever possible.

SAMPLE COMPILE AND GO

1. Compile TEST.BAS to create TEST.REL

A>BASCOM
*TEST,TTY:=TEST/N/D

2. Link TEST.REL with BASLIB.REL and execute

A> 180
*TEST/G

BASIC COMPILER ERROR MESSAGES

Compile-time Fatal Errors:

SN Syntax error

oM Out of memory

SQ Sequence error

™ Type mismatch

TC Too complex

BS Bad subscript

LL Line too long

ucC Unrecognizable command
oV Math overflow

/0 Division by zero

DD Array already dimensioned
FN FOR/NEXT error

FD Function already defined
UF Function not defined

WE  WHILE/WEND error

LS Long string constant

IN INCLUDE error

/E Missing /E switch

/X Missing /X switch

19



Compile-time Warning Errors:

ND

SI

Array not dimensioned
Statement ignored

Run-time Error Messages:

Syntax error

RETURN without GOSUB
Out of data

lllegal function call
Floating overflow or integer overflow
Subscript out of range
Division by zero

Out of string space
RESUME without error
Unprintable error
Field overflow

Internal error

Bad file number

File not found

Bad file mode

File already open

Disk 1/0 error

File already exists
Disk full

Input past end

Bad record number
Bad filename

Too many files

20






MICROSOFT 77

10800 N.E. Eighth, Suite 819
Bellevue, WA 98004
206-455-8080 Telex 328945

VECTOR MICROSOFT

Research Park

B-3030 Leuven

Belgium

32(16)20-24-96 Telex 26202 VECTOR

ASCII MICROSOFT

502 Hi Torio

5-6-4 Minami Aoyama

Minato-ku

Tokyo 107, Japan

03-409-7351 Telex 2426875 ASCIl J

7100-02

¢ 1981 MICROSOFT

PRINTED IN BELGIUM



	MBRB_00_0001
	MBRB_00_0002
	MBRB_01_0001
	MBRB_01_0002
	MBRB_01_0003
	MBRB_01_0004
	MBRB_01_0005
	MBRB_01_0006
	MBRB_01_0007
	MBRB_01_0008
	MBRB_01_0009
	MBRB_01_0010
	MBRB_01_0011
	MBRB_01_0012
	MBRB_01_0013
	MBRB_01_0014
	MBRB_01_0015
	MBRB_01_0016
	MBRB_01_0017
	MBRB_01_0018
	MBRB_01_0019
	MBRB_01_0020
	MBRB_01_0021
	MBRB_01_0022

