-Am9511

Arithmetic Processor

scsamtermnt

DISTINCTIVE CHARACTERISTICS

¢ Fixed point 16 and 32 bit operations

o Floating point 32 bit operations

e Binary data formats

o Add, Subtract, Muitiply and Divide

¢ Trigonometric and inversa trigonometric functions
Square roots, loganthms, exponentiation

Float to fixed and fixed to float conversions
Stack-oriented operand storage

DMA or programmed ;O data transfers

End signal simpiifies concurrent processing
General purpose 8-bit data bus interface -
Standard 24 pin package

+12 volt and +5 volt power supplies

Advanced N-channe! silicon gate MOS technology

®
.
[)
[
[]
9
®
L]
®
¢ 100 MIL-STD-883 reliability assurance testing

GENERAL DESCRIPTION

The Am9511 Arithmetic Processing Unit {APL)) is a monolithic
MOS/LS! device that provides high performance fixed and
floating point arithmetic and a variety of floating point
trigonometric and mathematical operations. it may be used to
enhance the computational capability of a wide variety of
processor-oriented systems.

All transfers, including operand, result. statu$ and command
information, take place cver an B-bit bidirectional cata bus.
Operands are pushed onto an nternal stack and a command
is issued to perform operations on the data n the stack. Re-
sults are then available to be retneved from the stack, or addi-
tional commands may be entered.

Transfers to and from the APU may be handled by the
associated processor using conventional programmed 10, or
may be handled by a direct memory access contraiier for 1m-
proved performance. Upon compietion of each command, the
APU issues an end of execution signal that may be used as
an interrupt by the CPU to help coordinate program execution.

BLOCK DIAGRAM

CONNECTION DIAGRAM

Top View
: .S
i ::"’:‘; — b (GN0) viS \? - 2 [T} B
: - ' .
L ot - [| s R i =
! O e Al 1S o
| vt —) e [—-:LT'—] EACRK ——er{]2 n [T peser
! wl w | { svack —{_14 n | j— cB
X svaeq —{] o [Jo—— 73
s L .
U = 00 s 19 | Je—— WA
000 - 087 <=1 puFFCR COMMAND w'g;:’" nor Amgs“
£GIST use 7 &
ConinoLLen. o0 ——e{"113 w [T PG
Py || conrroL oar ——={"] 10 [voo(e1m
o <) INTERFACE : e o82 G-O-C: 10 18 j-.—-— (12
FVALO =1 cOoNTROL o83 o—,—{ 1" 14 oRd
TRER e [}
[L — ona ——-r_': 12 1 :“ oes
b CLK —oemred
Pin 1 is marked for orientation.
MOS-048 MOS-047
ORDERING INFORMATION
Package Ambient Clock Frequency ’
Type Temperature 2MH2z 3MHz ! 48 Hz !
Y :
°C < < o . { y y
Hermetic DIP 0°C < Tp < +70°C AanSHDC I Am9511 10C ? Am9511-40C ;
-55°C < Ty = +125°C | Am9S11OM | Am9511,1DM | i
C LR A e S e~

http://www.fastio.com/

'INTERFACE SIGNAL DESCRIPTION

VCC: +5 Volit power supply

VDD: +12 Volt power supply

VSS: Ground

CLK (Clock, input)

An external timing source should be applied to the CLK pin.

_ The Clock input may be asynchronous to the Read and Write -

conirol signals.

RESET (Reset, input)

The active high Reset signal provides initialization for the
chip. Reset terminates any operation in progress, clears the
status register and places the Am3511 into the idie state
Stack contents are not affected by Reset. The Reset should
be active for at least 5 clock periods following stable supply

voltages and stable clock input. There is no internal power-on-

reset.
CS (Chip Select, Input)

CS is an active fow input signal which conditions the read and
write signals and thus enables communication with the data
bus.

- C/D (Command/Data, Input)
in conjunction with the RD and WR signals, the C/D control
hine establishes the type of transfers. that are tc be performed
on the data bus.

co | RD | WR Function - ;

Enter data byte into stack
Read data byte from stack

Enter command
Read status

G 1 0
0 0 1
1 1 Y
1 ¢ 1

|
{
l
|

|
l
I
I

RD (Read, Input)

‘The active low Read signatl is conditioned by CS and indi
cates that information_is 10 be transferred from internal loca-
tions 10 the data bus. BD and WR are mutually exclusive.

WR (Write, lnput)

The active low Write signal is conditioned by 'CS and indicates
that information is to be transferred from ine data bus into n-
ternal locations. RD and WR are mutually exclusive.

EACK (End Acknowledge, Input)

This active low input clears the end of execution output signal
{END) If EACK is tied fow. the END output will be a pulse
that is less than one clock period wide.

SVACR (Service Acknowledge, Input)

Thrs active fow input clears the service request output
(SVREQ).

END (End Execution, Output)

This active low, open-drain output indicates that execution of
the previously entered command is complete. It can be used
as an interrupt request and is cleared by EACK, RESET or
any read or write access to the Am9511.

SVREQ (Service Request, Output)

This -active high output signal indicates that command exe-
cution is complete and that post execution service was ra-
quested ‘in the previous command byte. It is cleared by
SVACK, by RESET, or by the end of a subsequent command
that does not request service.

PAUSE (Pause, Output)

This active law output indicates that the Am3511 has not yet
oompleted its information transfer with the host (or DMA) over the
data bus. Whenever a data read or a status read operation is
requested, PAUSE goes low. it returns high only atter the data
bus contains valid output data. When an existing command is still

. in the process of execution, and a data wnte, data read. or

command write is requested. then PAUSE aoes low for the re-

‘maining duration of the existing command pius any time needed

for initiating a data read. In both cases. the host should neither

N change any information to the AmS511, nor (in the case of data

read or status read) atiempt to capture data from the AmS511 DB
outputs untit PAUSE has retumed high. (See “Pause Operation”
section on page 5).

DBO-DB7 (Bidirectional Data Bus, /0)

These eight bidirectional fines provide for transter of com-
mands, status and data between the Am9511 and the CPU.
The AmS511 will drive the data bus only when CS and RD
are low.

COMMAND STRUCTURE

Each command entered into the Am8511 consists of a single
8-bit byte having the format illustrated below:

OPERATION _______ °
SVREQ SINGLE . FIXED] €00t :
™ L 1™
7 6 5 4 3 2 1 e

Bits 0-4 select the operation to be performed as shown in the

table. Bits 5-6 select the data format for the operation. If bit 5

is a 1, a fixed point data format is specified. If bit 5is a 0,

fioating point format is specified. Bit 6 selects the precision of
ClihPDE - wywniLfastio.com

the data 1o be operated on by fixed point commands (if bit 5
= 0, bit 6 must be 0). if bit 6 is a 1, single-precision {16-bit}
operands are indicated; if bit 6 is a 0, double-precision (32-bit}
operands are indicated. Results are undefined for ali :’llegai
combinations of bits in the command byte. Bit 7 indicates
whether a service request is to be issued after the command
is executed. If bit 7 is a 1, the service request output
(SVREQ) wil! go high at the conclusion of the command and
will remain high until reset by a low level on the service
acknowledge pin {SVACK) or untit completion of execution of
a succeeding command where bit 7 is 0. Each command is-
sued to the AmS511 requests post execution service based
upon the state of bit 7 in the command byte. When bit 7 is &
0, SVREQ remains low.

http://www.fastio.com/

‘COMMAND SUMMARY

Command oc® T Command Command Descripti
7]6[5[4|312]1;0 Mnemonic cription
FIXED POINT 16 BIT
st | 1 1 0 1 1 [N SADD Add TOS to NOS. Resutt to NOS. Pop Stack.
sr| 1 1 0 1 1 0 1 ssus Subtract TOS trom NOS. Resutt to NCS. Pop Stack.
sr| 1 1 0 1 1 1 0 SMUL Multiply NOS by TOS. Lower half of result to NOS. Pop Stack.
st |1 1 1 0 1 1 0 SMUU Multiply NOS by TOS. Upper halt of result to NOS. Pop Stack.
sr | 1 1 0 1 1 1 1 SOV Divide NOS by TOS. Result to NOS. Pop Stack,
FIXED POINT 32 8IT
sr i Q 1 0 1 1 0 0 DADD Add TOS to NOS. Result to NOS. Pop Stack:.
st O 1 0 1 1 0 1 psus Subtract TOS from NOS. Result to NOS. Pop Stack.
st | O 1 0 1 1 1 0 DMUL Multiply NOS by TOS. Lower half of result 1o NOS. Pop Stack.
st | O 1 1 0 1 1 0 DMUY Multiply NOS by TOS. Upper half of result to NOS. Pop Stack.
st 0 1 0 1 1 1 1 oDV Divide NOS by TOS. Result to NOS. Pop Stack.
FLOATING POINT 32 BIT
st | 0 0 1 0 0 0 0 FADD Add TOS to NOS. Resutt to NOS. Pop Stack,
st { OO 1 0 0 0 1 FsuB “Subtract TOS from NOS. Result to NOS. Pop Stack.
er| O /] 1 V] 0 1 0 FMUL Muttiply NOS by TOS. Result to NOS. Pop Stack.
srf 0|0} 1 0] 0} 1 FDIV Divide NOS by TOS. Result to NOS. Pop Stack.
DERIVED FLOATING POINT FUNCTIONS
srt 0 0 0 [} 0 (s} 1 SQRT Square Root of TOS. Resutt in TOS.
st { O o]0 0 0 1 0 SIN Sine of TOS. Result in TOS.
st 010101 0] 0 1 1 Ccos Cosine of TOS. Resutt in TOS.
s 000! 0 1 0 0 TAN Tangent of TOS. Resuit in TOS.
leelojojofo]|v|o] 1 ASIN Inverse Sine ot TOS. Resutt in TOS.
sr{ 0|0} 0} O 1 1 0 ACOS Inverse Cosine of TOS. Resutt in TOS.
ssi 01 0} 0} 0 1 1 1 ATAM Inverse Tangent of TOS. Resuit n.TOS.
ss{ 0 0} 0 1 oo} o0 LOG Common Logarithm {base 10} of TOS. Result in Tos
sri O (o} 0 1 0 [¢] 1 LN Natural Loganthm {base e) of TOS. Resuit in TOS.
sr | O 0 0 1 0 1 0 EXP Exponential (8”) of TOS. Resutt in TOS.
sr 0 0 0 1 0 1 1 PWR NOS raised to the power in TOS, Resuit in NOS. Pop Stack.
DATA MANIPULATION COMMANDS
s | 0 L] o 0 0 0 ¢} NOP No Operation
srt O 0 1 1 1 1 1 FIXS Convert TOS from fioating point to 16-bit fixed port farmat,
sr i O 0 1 1 1 1 0 FIXD Convert TOS from floating point to 32-bit fixed point format.
sr | O 0 1 1 1 [} 1 FLTS Convert TOS from.16-bit fixed pont to floating point format.
st ! O 0 1 1 1 0 0 FLTD Convert TOS from 32-bit fixed point to tioating pomnt format.
sr 1 1 1 [} 1 [+} (¢} CHSS Change sign of 16-bit fixed point operana on TOS.
srl O 1 1 0 1 [0 CHSD Change sign of 32-bit fixed point operanc on TOS.
srl 00 1 0 1 0 1 CHSF Change sign of floating point operand on TOS.
g | 1 1 1 [1 1 1 PTOS Push 16-bit fixed point aperand on 70S to NOS (Copy)
sri 0 1 1 0 1 1 1 PTOD Push 32-bit fixed point operand on TOS to NOS. (Copy)
sr| 00O 1 0 1 1 1 PTOF Push floating point operand on TOS to NOS. (Copy)
sr| 1 1 1 1 0 0 0 POPS Pop 16-hit fixed point operand from TOS. NOS becomes TOS.
sr| O 1 1 1 0 0 Q POPD Pop 32-bit fixed point operand trom TOS. NOS becomes TOS.
sr| 0 0 1 1 0 0 [+} POPF Pop floating point operand trom TOS. NOS becomes TOS.
sr| 1 1 1 1 0 0 1 XCHS Exchange 16-bit fixed point.operands TOS and NCS.
] 1 1 1 010 1 XCHD Exchange 32-bit fixed point operands TOS ana NOS.
&1 0] 0 1 1 o0 1 XCHF Exchange floating point operands TOS and NOS.
sr{ 0| O 1 1 0 1 0 PUPJ Push floating point cpnstarh “#" onto TOS. Previous TOS becomes NOS.

NOTES:

1. TOS means Top of Stack. NOS means Next on Stack.

2. AMD Application Brief "Algorithm Details for the Am9511
APU" provides detailed descriptions of each command
function, including data ranges, accuracies, stack config-
urations, etc.

3. Many commands destroy one stack location (bottom of
stack) during development of the result. The derived func-
tions may destroy several stack locations. See Application
Brief for details.

ClibPDF - www.lastio.com

4. The trigonometric functions handle angles in radians, not

degrees.

5. No remainder is available for the fixed-point divide functions.
6. Resuits will be undefined for any combination of command

coding bits not specified in this table.

http://www.fastio.com/

DATA FORMATS "

The Am8511 Arithmetic Processing Unit handles operands in
both fixed point and fioating point formats. Fixed point
operanas may be represented in either single (16-bit
operands) or double precision (32-bit operands), and are al-
ways represented as binary, two's complement values.

16-BIT FIXED POINT FORMAT
s VALUE
BERTEEENEE R
s o

{Ms8)

32-BIT FIXED POINT FORMAT

s VALUE J
RN NN NN
3 9
Ms8)

The sign (positive or negative) of the operand is located in.the
most significant bit (MSB). Positive values are represented by
a sign bit of zero (S = 0). Negative values are represented by
the two's compiement of the corresponding positive vatue with
a sign bit equal to 1 (S = 1). The range of values that may be
accommodated by each of these formats is -32,768 to
+32,767 for singie precision and ~2,147,483,648 to
+2,147 483,647 for double precision.

Fioating point binary values are represented in a format that
permuls arithmetic 10 be performed in a fashion analogous to
operations with decimal vaiues expressed in scientific nota-
tion.

(5.83 x 10%)(8.16 x 10') = (4.75728 x 10%)

In the decimal system, data may be expressed as values be-
tween 0 and 10 times 10 raised o a power that effectively
shifts the implied decimal point right or teft the number of
places necessary to express the result in conventional form
{e.g., 47,572.8). The value-portion of the data is calied the
mantissa. The exponent may be either negative or positive.

The concept of Hioating point notation has both a'gain and a
loss associated with it. The gain is the ability to represent the
significant digits of data with values spanning a large dynamic
" ‘range limited only by the capacity of the exponent field. For

example, in decimal notation if the exponent field is two digits
wide, and the mantissa is five digits, a range of values (pesi-
tive or negative) from 1.0000 x 10~% to ©.9999 x 107% can
be accommodated. The loss is that only the significant digits
of the vaiue can be represented. Thus thare is no distnation
in this .representation between the values 123451 and
123452, for example, since each wouid be expressed
as: 1.2345 x 10%. The sixth digit has been discarded. in most
applications where the dynamic range of valugs to be rep-
resented is large, the loss of significance, and hence accuracy
of results, is a minor consideration. For greater precision 2
fixed point format. could be chosen, althougn with a lass of po-
tential dynamic range.

The Am9511 is a binary arithmetic processar and requires
that floating point data be represented by a frachonal map-
tissa value petween .5 and 1 multiplied by 2 raised to an ap-
propriate power. This is expressed as follows:

value = mantissa x 2expenent

For example, the value 100.5 expressed it this form is
0.11001001 x 2. The decimal equivalent of this valus may be
computed by summing the components (powers of two) of the
mantissa and then multiplying by the exponant as shown be-
low: .
value = (271 + 272 4+ 275 4 278 5 27

= (0.5 + 0.25 + 0.03125 + 0.00290625) x 128

= 0.78515625 x 128

= 100.5 i

FLOATING POINT FORMAT

The format for floating point values in the Am9511 is given be-
low. The mantissa is expressed as a 24-bit (fractional) vaiue;
the exponent is expressed as an unbiased o & Compement
7-bit value having a range of —64 to +63. The most sigrub-
cant bit is the sign of the mantissa (0 = positive, ¥ = nega-
tive), for a total of 32 bits. The binary point 15 assumed to be
to the left of the most significant mantissa bif {bit 23). Al fioat-
ing point data values must be normahzed. Bit 23 must ba
equal to 1, except for the valua zero, which is reprasentad by
all zeros.

“E:mm‘ MANTISSA i
SlsllllllllllHlJllHH'{JJ'ZHH.
)

823 14

The range of vaiues that can be represented in this fomat is
(2.7 x 1070 10 9.2 x 10"®) and zero.

PHYSICAL DIMENSIONS -
Duakin-Line

24-Pin Side-Brazed

24 13 f

1230 MAX. -]

ClihPD W fastio.com

http://www.fastio.com/

FUNCTIONAL DESCRIPTION

Stack Controf

The user interface to the Am9511 includes access to an .8
level 16-bit wide data stack. Since singie precision fixed point
operands are 16 bits in length, eight such values may be
maintained in the stack. When using doubie precision fixed
point or floating point formats four values may be stored. The
stack in these two configurations can be visualized as shown
telow:

105 -l B4 , 83 v0s ——e{ 83 , 87 , B6 ss‘
NO§S =i B2 , B1 NO§ ~~—ei 84 & B3 A6 B2 81

1
I

i 1 1 i ‘
: 1 L

2
1
.
i

A

- 1§
Data are wntten onto the stack, eight bits at a time. in the
order shown (Bt, B2, B3,...). Data are removed from the
stack in reverse byte order (B8, B7, B6. . ..). Data should be
transferred into or out of the stack in multiples of the number
of bytes appropriate to the chosen data format.

Data Entry

Data entry is accomplished by bringing the chip select (CS).
the command;data line (C/D), and WR low, as-shown in the
timing diagram. The entry of each new data word “pushes
down"” the previously entered data and places the new byte

on the top of stack {TOS). Data on the bottom of the stack -

prior to a stack entry are lost.

Data Removal

Data are removed from the stack in_the Am9511 by bringing
chip select (CS), commana/data (C/D). and RD low as shown
in the timing diagram. The removal of each data word rede-
fines TOS so that the next successive byte to be removed
becomes TOS. Data removed from the stack rotates to ihe
bottom of the stack.

Command Entry
After the appropriate number of bytes of data have been en-
tered onto the stack. a command may be i1ssued to perform

an operation on that data. Commands which require two’

operands for execution (e.g., add) operate on the TOS and
NOS values. Single operand commands operate only on tne
TOS.

Commands are issued to the Am9511t by bringing the chip
select (CS) line low, command/data (C/D) line high, and WR
line low as indicated by the timing diagram. After a command
is issued, the CPU can continue execution of its program
concurrently with the Am38511 command execution.

Command Completion

The Am3511 signals the completion of each command exe-
cution by fowering the End Execution fine (END). Simulta-
neously, the busy bit in the status register is cleared and the
Service Request bit of the command reqister is checked. If it
is a “1” the service request output level (SVREQ) is raised.
END i =ND is cleared on receipt of an active low End Acknowledge
(EACK) pulse. Similarly, the service request line is cleared by
recognition of an active low Service Acknowiedge (SVACK)
pulse.

Pause Operation

An active low Pause (PAUSE) is provided. This line is high in
its quiescent state and is pulled low by the Am9511 under the
Callavto onditicnsy [as(io.com

1. A previously initiated operation is in progress (device busy)
and Command Emry has been attempted. in this case, the
PAUSE line will be pulled low and remain low until comple-
tion of the current command execution. It will then go high,
permitting entry of the new command.

2. A previously initiated operation is in progress and stack
access has been attempted. In this case, the PAUSE line
wiil be pulled low, will remain in that state until execution is
complete, and will then be raised to permit completion of
the stack access.

3. The Am9511 is not busy, and data removal has been re-
quested. PAUSE will be putied low for the length of time
necessary to transfer the byte from the top of stack to the
interface latch, and will then go high, indicating availabiity
of the data.

4. The Am9511 is not busy, and a data entry has been re-
quesled. PAUSE will be pulled low for the fength of time
required to ascertain if the preceding data byte, if any has
been written to the stack. It so PAUSE will immediately go
high. It not, PAUSE will remain fow until the interface latch
is free and will then go high.

5. When a status read has been requested, PAUSE will be
pulled low for the length of time necessary to transfer the
status to the interface latch, and will then be raised to
permit compietion of the status read. Status may be read
whether or not the Am9511 1s busy.

When PAUSE goes low. the APU expects the bus and bus
control signals present at the time to remain stable until
PAUSE goes high.

Device Status

Device status is provided by means of an internal status regis-
ter whose format is shown below:

BUSY SIGN ZEROQ ‘}e————— ERROR CODE ~—rr—eni CARRY

L L1

7 i ¢

BUSY: Indicates that Am9511 is currentty executing a com-
mand {1 = Busy).

SIGN: Indicates that the value on the top of stack is negative
{1 = Negate).

ZERO: Indicates that the value on the top of stack is zero (1
= Value is zero).

ERRQR CODE: This field contans an indication of the va-
lidity of the result of the last operation. The error
codes are:

0000 — No error

1000 — Divide by zero

0100 - Square root or log of negative number

1100 - Argument of inverse sine, cosine, or @* 100 large
XX10 - Underflow

XX01 ~ Overflow

CARRY: Previous operation resuited in carry or borrow from
most significant bit. (1 = Carry/Borrow, 0 = No Carry/
No Borrow)

If the BUSY bit in the status register is a one, the other status

bits are not detined; if zero. indicating not busy, the operation

is complete and the other status bits are defined as given
above.

Read Status

The Am9511 status register can be read by the CPU at any
time (whether an operation is in progress or not) by bringing
the chip select (CS) low, the command-data line (C/D) high,
and lowering RD. The status register is then gated onto the
data bus and may be input by the CPLL,

http://www.fastio.com/

EXECUTION TIMES

Timing for execution of the Am9511 command set is shown in
the table below. Speeds are Given in tewrs of clock cycles
and should be multipiied by the clock penod being usea to ar-
nve at sme values. Where substantial vanation of execution
times is possible, the mimmum and maximum values are
shown: otherwise, typical values are given. Variations are
data dependent. Some boundary conditions that wilt cause
shorter execution times are not taken into account. The listing
is in alphabetical order by mnemonic.

Total execution times may requie allowances for operand
transfer into the AP, command axecution. and result retrieval
from the APU. Except for command execution, these times
will be heavily influenced by the nature of the data, the control
interface used, the speed of memory, the CPU used, the pri-
onty aliotted to DMA and Interrupt operations, the size and
number of operands to be transierred. and the use of chaned
calculations, etc.

COMMAND EXECUTION TIMES

it

Command Cinek i Command Clock i
Mnemaonie Cvcies | Mnemonic Cycies i
ACOS 6304.8284 LOG ca7arize |
ASIN 6230-7238 LN o a2veiass
ATAN 4392-8536 NOP 4 :
CHSD 26-28 POPD i2 ;
CHSF 16-20 POPF v 1z !
CHSS 2224 poPs © 10 ;
coLs 3840-4878 FTOD Prood |
DADD 2022 PTOF 20 |
Do/ 196-210 PTOS i6 |
DM 194-210 PLPI 16
DMUU 182-218 PWR BIBG-V IS !
psus 38-40 SADD 1618 .
EXP 3794-4873 SOV §4-94
FADD 54368 SiIN 4796-4808
FOv 154.184 SMUL 84-94 i
FIXD 90-336 SMUL 80-98 i
FIXS 90-214 SQRT 782 876G |
FLTD £6-342 ssuB 30-32 ;
FLTS 52-156 TAN 48G4-5886 :
FMUL 146-168 XCHD 26 !
FSuB 70-370 XCHF 26 |
XCHS 18 i

As menhoned. the ahove Clook cycle execution times can be converted to usec by
multiplying by the clock period used. Several examples (minimums) are shown delow:

Commend | Amgs1 Amo511-1 Am9511-4
Description i {2MHz2) {3MHz) {4MH2)
_Bit Floating-Pomnt i
f;f: :(g‘z')"gf* Poin | 1920usec 1280ps6c 960usec
R E st Poand 3
)i (’2’)(:,')“*"‘* YT tee7usec 1265us8c 849,300
i
32-8it Floating Prsing ¢ . .
Multipiy (FMUL) § 73usec 4A9usec 37usec
16-Bit Fived-Powes | —
Multioly, Lowsr (SMUt 42usec ?8“ sec 2lpsei :
i ! H
32 81t Floating-Point _— eI
Adrs (FADD) | 27usac 18usec t4usec ;
16-8it Fixed-Point ‘ i
i &5
Add (SADD) E Busec Susec LSEC i

http://www.fastio.com/

HAXIMUM RATINGS beyond which useful life may be impaired
Sorege Temperature

3 Amblent Temperature Under Blas

A Y00 with Respect to VSS

© -65°C'to +150°C
-55°C to +125°C
-0.5V to +15.0V°

"§ #C with Respect to VSS ~0.5V to +7.0V'
A Signal Voltages with Respect to VSS ~0.5V to +7.0V
Power Dissipation (Package Limitation) 2.0W.

OPERATING RANGE

1 ™e products described by this specification include intermnal circuitry designed to protect input devices from damaging accumulations of’
satic charge. It is suggested, nevertheless, that conventional precautions be cbserved duri

ng storage, handling and use in order to avoid:
aposure 1o excessive voftages. :

Part Number Amblent Temperature vss vCC vDD
- Am95110C 0°C < Ty < +70°C ov +5.0V £5% +12v +5%
| Am3S110M -55°C < Ty = +125°C ov +5.0V =10% +12V +10%
ELECTRICAL CHARACTERISTICS Over Operating Range (Note 1)
§ Parameters Description Test Conditions Min, Typ. . Max, Units
B * Output HIGH Voltage IOH = —200uA a7 Voits
H VoL Output LOW Voltage IOL = 3.2mA 04 Volts
VIH Input HIGH Voltage 20 vce Voits.
VR Input LOW Voltage -05 08 Voits
[1iX Input Load Current VSS < Vi < VCC *10 nA
02 Data Bus Leakage VO - 0.4V 10 A
! VO = VCC 10
Ta = +25°C 50 90
IcC VCC Supply Current Ta =0C R mA
Ta = -55°C - 100
Ts = +25°C 50 90
oh] VDO Supply Current - Ta=0C 95 mA
’ Tp = -55°C 100
co Output Capacitance 8 10 pF
a Input Capacitance 16 = 1.0MHz, Inputs = OV 5 8 oF -
foio 10 Capacitance ' - 10 12 oF
L ClipPDE=www fastio.com-

http://www.fastio.com/

LeBIN

- SWITCHING CHARACTERISTICS over operating range (Notes 2. 3

(Preﬂm&ﬁuy)-

g4
! b4
{
i
i

SR Amos11 Amos1t-1 Amg511-4 ,
Parameters Description Min. Max. Min. Max. - Min. Max. Units
TAPW " | EACK LOW Puise Width 100 75 50 ns
TCOA | C/D to AD LOW Set up Time 0) ns

| TCOW | C/D 1o WA LOW Set up Time _ 0 0 . n
TCPH | Clock Pulse HIGH Width 200 140 100 ns
TCPL | Ciock Pulse LOW Width 240 160 120° ns
TCSR" - | CS LOW to RD LOW Set up Time 50 25 25 ns .
| TCSW-.-| €S LOW to WA LOW Set up Time 50 25 25 ns
TCY | Clock Period 480 5000 330 2300 250 2500 | ons
row | Detd Bus Stable to WR
Tow "HIGH Set up Time 150 100 100 ns
| TEAE | EACK LOW to END HIGH Delay 200 175 150 ns.
TEPW - | END LOW Puise Width (Note 4) 400 300 200 ns
"~ { Data Bus Output Vaiid to N
TOP" | BAUSE HIGH Delay 0 0 : 0 ns
. PAUSE LOW Puise Data | 3.5TCY+50 |5.5TCY+300| 3.5TCY+50 | 55TCY+200 | 35TCY+50 | 5.5TCY+200
TPPWR | VS ns
Width Read (Note 5) Status | 1.5TCY+6Q |3.5TCY+300{ 1.5TCY+50 | 3.5TCY+200 | 1.5TCY+50 | 3.57CY 200
. | PAUSE LOW Puise g
TPPWW | Wicth writs (Note &) so 5o 0 s
i PAUSE HIGH 1o RD HIGH :
TR Hald Time 0 0 0 ns
- | PAUSE HIGH to WR HIGH
TPW | i Tme 0 0 0 as
TRCD | AD HIGH to C/D Hold Time ns
TRCS * | AD MIGH to C8 HIGH Hold Time 0 0 ns
TRQ RD LOW to Data Bus ON Delay 50 50 25 ns
- | RD LOW to PAUSE
TRE | ow Delay (Note 6) 150 100 100 ns
TRZ | RD HIGH to Data Bus OFF Delay 50 200 50 150 25 100 ns
TSAPW | SVACK LOW Pulse Width "100 75 50 ns
: .| SVACK tow to ;
TSAR. | SVREQ LOW Deiay %00 200 150 s
TWCD | WR HIGH to C/D Hoid Time 50 ‘30 30 ns
TWCS | WR HIGH to CS HIGH Hold Time 60 30 30 ns |
TWO | WR HIGH to Data Bus Hold Time 20 20 20 as
Write inactive Time Command 3TCY 3TCY 3TCY
T™WI - ns
(Note 8) - Data ATCY 4TCY 4TCY :
WH LOW to PAUSE ' '
TWR oW Detay (Nots 6 150 100 100 ns
NOTES is the ﬁhe to-completa exeuction plus the time shown. Status

1.

2.
3.

4. END low puise width is specified for EACK tied to VSS.

Typical values are for Ta = 25°C, nominal supply voltages and
nominal processing parameters.

Switching parameters are listed in alphabeticat order.

Test conditions assume transition times of 20ns or less, output
loading of ore TTL gate plus 100pF and timing reference levels
of 0.8V and 2.0V.

Other-
wise TEAE applies. '

5. Minimum'values shown assume no previously entered com-

mand is being executed for the data access. If a previously
entered command is being executed, PAUSE LOW Pulse Width

ClibPDF - wwvw fastio.com

4-28

may be read at any time without exceeding the time shown.

. PAUSE is pulled low for both command and data operations.
. TEX is the execution time of the current command (see the

Command Execution Times tabie).

. PAUSE low pulse width is lass than 50ns when writing into the

data port or the control port as long as the duty cycle require-
ment (TWI) is observed and no previous command is being
executed. TWI may be safely violated as long as the extended
TPPWW that results is observed. if a previously entered com-
mand is being executed, PAUSE LOW Pulse Width is the time
to compiete execution plus the time shown.

http://www.fastio.com/

SWITCHING WAVEFORMS

READ OPERATIONS

— e
l.—@n-—- . o —-fo‘—rnco

lomo-—‘\ » PR r——m—————‘.l
FAIRE . ! Lu..rnz mAXY
’ YID—L fn TOP e} - ———l 5-?— TRZ IMIN.}

DATA ¥,
X

§

-~

OUTPYT VALID

: OOOCOOOOOOOOOOOCOOCOOCON0
Bl e

—

CCHPPDFE 2 www fastiocdm -0 = oo

| MOS-048. |-

http://www.fastio.com/

APPUCATlON !NFORMATION

" The daagram i Fgure 2 shows the mtertace connecuons for:_ '

. the Am9511 APU with opérand transfers handleéd by an

Am9517 DMA controller, and CPU coordination handled by an .

Am9519 Interrupt Controller. The APU interrupts the CPU to

indicata that a command has been completed. When the per- -
1ormance enhancemems provnded by the. DMA and Imercupl'_

8- blt processor

simplified as shown in. _Figure 1. The Am38511 APU is de-

scgned with' a general purpose 8-bit data bus and interface . §

controt so that it can. be convemenuy used with any generat B
3

ADDRESSBUS °

cs & |

Amas11
ARITHMET!C

L SYSTEM DATA BUS

s

_Figure 1. Am9511 Minimum Configuration Example.

Figure 2. Am9511 High Performance Configuration Example.

N %en owa oev v
G4 G2 . { ey
o B M ; ' B
» §§ e
71 JOmme a AO-A3 | M-ar] i >®oar .
B atn b4
" §3 volom : & 2 ot \
S ﬁ i spare o -APORESS LATON
2
AR mlm“k(l -
now - Ke)
3 3 !
moa ACK. g
”Aion E g B E é.? : d i
] : T
L8
e
s =
; =
.
Py "
o
wer .
Ny ER I] - & svaeq WRIR B AD wR
aTar . 2 Arwdls AtGe : &
Fm_l [on ARG 14 ARITIMETIC.
- oAk T FROCESSING UMIT
T - o= AT
fropsind E omm o Faost | 5 CLK AESET FAUSE 080 -08) FAEK
crock SYRC e T
GENERATOR “ " =% - —J ’ I
YR OTHER
” ” I i =
DEVICES 7
—f REER miser et o8-07 C$ oo Y3Tim osa—oanl > a8 e
ACADY
L of FET P ¢ AA——y -
il comTROLLER :
. ey
Y
L
\ *EaDy

ClibPDF -

wwww fastio.com

430

operauons are not requxred the APU mterface can be F

http://www.fastio.com/

) |NTRODUCTION . : C
The Amg511 APU is a eomplote h5gh peﬂormanoo. complex
arithmetic processor contained within a single chip. It is de- -
signed to enhance the Aumber manipulation. capability of a . L .\ .
wide variety of processor systems. it includes not anly © s vee ——{14 b L)
fioating-point operations: but fixad-point-as well: not only basic L eeavee ——— {2 B e ctocx
add, subtract, muitiply. and divide operations, but a _group- of R . g ') alT]
transcendental -derived. functions plus controt and conversion : : . il
. . GERBEE —Je 2 :}___ CONTROU
commands as well.. This Application Brief :provides detailed ACKNGWLEDOR.) BATA
.~ descriptions of all the: commands that can be executed by the ITNCR MOURST. = T8 B [A
"5 Am8511 and indicates thoerror perfonnanca of the derived | | - e n " ma——
kfuncﬁons . S L L e g AmI e s
i : o P T - PRIy ¥ T, |7:-—'-fm
The Amg511 is packaged ina standard 24 pm dual in-in@ ~ baTA BUK'Y ._.{: [2 o O e voo(e12v)
package with .6 inch betweon rows. Fgure 1 shows the pack- . | DATA B8 & =]] . 18 [Yoo 0ATA BUSY
... age pin assignments.. Details on the' ‘operation of each .inter- - S]
: faceptnwmbofoundmttwdatasheqt. B : paa Ay = O» wid imiabendd
SR ’ ‘oatasme =—{1n » B[Jee DatABUSS
The block diagram in Figure 2 shows the mtemal structure of
the APU. The part is addressedasMopoﬂs selected by the .) _
C/B contro line. When C/D is high (Conlrol Port). a read op- ‘ : MOs-001

bmmaou némfmuﬂau CLOCK ax
»'alil } ;l 41X 18 QENERATOR
wo > L — - : #oom
vee > @ : :
vis [> : ; :
WORKING REQISTERS N ANTHIETIC NIT
Wxe 4 NTS
ST SUS -
e JegEm] |
L | — | § 5
DBY] — fute——ene €3
084~ § E :> CONTROL AON e TR
088 <] . T4 X 18)
e e § R |
DB7 s Ixe o .
. _ v v woscaz | B
~ Figure 2. Arithmetic Processing Unit Biock Diagram. B
ClibPD wivw fastio:com - o 8.2 . gﬁ

http://www.fastio.com/

,viﬂonwmniﬂnbgMWamop«aﬂonm
lors.a command.. When.C/DJ is low (Data Port), a read opera-
tion accesses data from the.fop of the data stack and a write
operation enters data into the top of the data stack,

Dats Formats . = - -

¥ ™o APU executes both 18- and 32-bit fixed-point operations,

Al fixed-point operands and results are represented as binary
wo's complement integer vaiues. The 16-bit format can ex-
prass_numbers with a range of —32,788 to +32,767. The
32-bit. format can express numbers with a range- of
-2,147,483,6848 to +2,147;483.647. o

The floating-point format uses. a 32-bit word with fields as
shown in Figure 3. The most significant bit (bit 31) indicates
the sign of the marntissa. The next seven bits form the axpo-
nent and the remaining 24 bits form the mantissa value.

- The exponent of the base 2 is an unbiased wo's complement
4 rumber with a range of —64 to-+63. The mantissa is a
-4 Sign-magnitude number with an assumed binary point just to
" the left- of the most significant mantissa bit {bit 23). Ali

" floating-point . values must be normalized, which makes bit 23
" always equal t0 .1 axcept when representing a value of zero,

Data Stack

Figure 5 shows the two logical organizations of the intemal
data stack. It operates as a true push-down stack or FILO

" stack. That is, the data first written in will be the data last read

out. Within each stack entry, the least significant byte is en-
tered first and retrieved last. -

Figure 6 shows a typical sequence for 32 bit operations. 6a
represents the stack prior to entry of data. 6b shows the stack
following entry of the LS Byt of operand C. 6¢ illustrates the
stack contents following the entry of four bytes of operand C.
When operands C, B and A are all fully entered the stack ap-
pears as in 6e. If a command is then issued, to add B to A for
example, the stack contents look like 6f where R is the result
of B + A. When the first (MSB) byte of R is temoved the
stack appears as in 69. 6h shows the stack following the
complete retrieval or R. An even number of bytes should al-
ways be transferred for any data operation.)

lwe—— TOP OF STACK (TOS)
em=——— NEXT ON STACK {NOS)

b e e Sl e e

, iThonumborZerolompmmtodwnhbharyzminaﬂmbn
EXPONENT $iGN
'L_ } . e MANTISEA |
[':El'llIll!llllllllllll!llllllllll-l
ne o Ha T ’ ;]
.~ PFigure 3. Fioating Point Format.
Status Register

The Am9511 Status register format is shown In Figurs 4.
whenmeausyb«(bnnismgh,momuzspmesssnga
previously entered command and the balance of the Status
register: shouid not be considered valid. When the Busy bit is
low, the operation is complete and the other status bits are
valid, : :

TIITIIL]

[T
i1 = Canry or Borrow
H

i

b+ Overtow
S

—-——i’-m

g 10 = Zyro Orvinor
o 11 = Argument 100 Large

s 1w Top of Stack & 28D

Ervor
Fied

'1-Tq)d3h$'tm

- 1 = Buay

Figure 4, Status Register.

b

ClihPDFE vy fastio-com=

. ! _. <
323ITOPERAND$

-ie— TOP OF STACK (TOS)
r-—— NEXT ON STACK {NOS)

e 16—

18 BIT OPERANDS

MOS-008

Figure 5. Stack Configurations.

Command Format) :

Each command exectted by the APU is specified by a single
byte with the format shown in Figure 7. Bits 0 through 4. indi-
cate the operation (o0 be performed. Bits 5 and 6 specify the
data format. Bit 7 is used to control the Service Request inter-

" face line. When bit 7 is a one,. the SYREQ output:will go: true,

whaen the axecution of the command is complete.. R

http://www.fastio.com/

108 ——a] . 1 : TS e Ae A3 A2 . A
\ \ . B4 |, B3 , B2 , @1
“(a) 1 { 1 (e} . C4 [ox] c2 . Ct
1 i]
l— 2
TOS ——] C1'f i . TOS _«_’R4 R3R2R1
| \ \ o fee a2, o
o)) 1] i 1)
‘ l i 1
TOS ——={ C4 | &8, c2 o TOS ——={ R3 , R2 Rt C4.
y \ | €3 C2 ct P
(©) i L @
' 1 1]
TOS —= B1 | C4 , C3 , C2 T0$ —={ c4 , 3, c2. C1
1 i 1
{d) L 1 1 M
] i]
Figure 6. Stack Data Sequence Exampie. -
~ OPERATION
SVREQ SINGLE FIXED CODE
fs N T R
7 6 5 3 2 1 0

4

Figure 7. Command Format.

ClibPDF - wyvw.fastio.com

54

http://www.fastio.com/

B R R

Command | Hex Code | Hex Code | Execution - . Summary
Mnemonic (ar = 1) {sr = Q) Cycles: .7 Description
____16-BIT FIXED-POINT OPERATIONS '
SADD EC. . | eC 16-18 . | Add TOS to NOS. Result to NOS. Pop Stack.
ssus B | ep 3032 Subtract TOS from NOS. Result to NOS. Pop Stack.
SMuL EE 6E 84-94 Multiply NOS by TOS. Lower rasult to NOS. Pop Stack.
. SMUU 8. . 3 80-96 Muitiply NOS by TOS. Upper result to NOS. Pop Stack.
SO EF 8F 84-94 Divide NOS by TOS. Result to NOS. Pop Stack.
. 32-BIT FIXED-POINT OPERATIONS
DADD AC . 2C° 2022 Add TOS to NOS. Result 10 NOS. Pop Stack,
osus AD i 20 3840 - Subtract TOS from NOS. Result to NOS, Pop Stack.
OMUL AE . I 2E 194-210 Muitiply NOS by TOS. Lower rasult to NOS. Pop Stack.
DMUU B8 | 38 182-218 Muttiply NOS by TOS. Upper result o NOS. Pop Stack.
oDIV AF 2F 196-210 Divide NOS by TOS. Resut to NOS. Pop Stack. :
32-BIT FLOATING-POINT PRIMARY QPERATIONS !
FADD 9% 10 54.368 Add TOS to NOS. Result 1o NOS. Pop Stack.
. FSuB 91 11 70-370 Subtract TOS from NOS. Result to NOS. Pop Stack.
© FMUL 92 12 146-168 Muttiply NOS by TOS. Result to NOS. Pop Stack. o
FOIV 93 13 154-164 Divide NOS by TOS. Resuit to NOS. Pop Stack
32-BIT FLOATING-POINT DERIVED OPERATIONS
SQRT 81 o1 782-870: Square Root of TOS. Result to TOS.
SIN 82 - 02 3796-4808 Sine of TOS. Result to TOS.
cos & [38404878 | * Cosiné of TOS. Result 1o TOS,
TAN 84 o4 4894-5888 " Tangent of TOS. Resuit to TOS.
ASIN 85 05 6230-7938 inverse Sine of TOS. Result to TOS.
ACOS 88 06 6304-8284 Inverse Cosine of TOS. Result to TOS.
ATAN 87 o7 49926536 inverse Tangent of TOS. Resut 1o TOS.
LOG 88 44747132 | Common Logarithm of TOS. Resuit to TOS.
; LN 89 - 4298-6958 Natural Logarithm of TOS. Resuit to TOS.
EXP 8A OA 3794-4878 o raised to power in TOS. Result to TOS.
! PWR 88 08 629012032 | NOS raised to power in TOS. Resutt o NOS. Pop Stack.
DATA AND STACK MANIPULATION OPERATIONS
NQP 80 00 4 No Operation. Clear or set SVHEO.
Lo o || o705 fom g et ot e ot e
{ ::;S; x :g ::;‘5:} c_onmrosmmwpoemfomammngpambmag
i Z::i : ;: 222::; } Change sign of fixed point operand on TOS.
{ CHSF 95 15 1620 | Change sign of foating point operand on TOS.
! PTOS F7 7 16 } B .
. PTOD 87 a7 20 Push stack. Dupiicate NOS in TOS.
¥ PTOF o7 17 20) : ‘ ‘
1‘ - POPS 2 78 10 . : : o
' . POPD) 38 12} | Pop stack. Okl NOS becomes new TOS. Od TOS rotates 1o bottom,
POPF. 98 18 12) :
XCHS Fo 79 18 , _'
= XCHD B9 39 26} Exchange TOS and NOS. -
; XCHF. 99 19 26 o : : R
: PUPY A - Wl e Push floating point constant onto TOS. Previous TOS bacomes NOS.

ek continie

:

L ClihPDFE - wanvi fastio com.. -

i

" Figure a

http://www.fastio.com/

¢ 7 psfollows:

ClihPDF

' ALGonrmu mscuss:ou

Computer approx:manans of transcendan(al functions are
often based on some fogn of polynomial equation, sych as:

FO) = Ag + AX + AXZ + AXS + AXY ... (-1
The primary shortcoming of an approximation in this form is
that it typically exhibits very large errors when the magnitude
- of L X | is large, although the.errors are small when 1X| is

small, With- polynomnals in this form, the error distribution is.
markedly uneven over any arbitrary interval.

Foitunately, a. set ot approxamanng functions exists that not
- only minimizes the’ maxnnum error but also provides an even
. distribution of errors within. the selected data representation in-

: terval. These are knowri as Chebyshev Polynomiais and are

. based upon cosine tuncuons. 2 These functions are definéd

‘=012..‘

. Ta(X) = Cos ng; wheref 12

8 = Cos™'X
: The various terms of tho Chebyshev saries can be computed

'?__’asshownbebw

To(X) = Cos (0 - 6) = Cos (o) =1 (1-4)

Ti(X) = Cos (Cos™'X) = (1-5y

TX) = Cos 20 = 2Cos? o — 1= 2Cos? (Cos™'X) - 1 (1:6)
=2x¥- 1

In general, the next term in the Chebyshev series can be re-
cursively derived from tha previous term as follows:

TaX) = 2X [Ta=1(X)] = Ta-2 (X); n> 2 (1-7)
The terms T;, T4 Ts and T are given below for reference:
Ta=ax®-3x . {1-8)
Ty =8X* - 8X%+ 1 (1-9)
Ts = usx5 - 20X3 +°5X {1-10)
Ty = 32X5 - 48x* .+ 18%% - 1 (1-11)
Chebyshev polynomials can be directly substituted for corre-

- spondmg terms of a power series expansion by simple a!ge-
fbrax: manipulation:

=T, (1-12)
X =T, {1-13)

S X2 = 12 (To +7T)) {(1-14)

X3 = 43T, + Ty (1-15)
X = 48 (3T + 4T, + Ty) (1-18)
X5 = 118 (10T, + 5T3 + Tg) (117
;x‘ = 1/32 10Ty + 15T + 6T, + Tg) (1-18)

Each of the derived functions except squara root implemented

In the Am9511 APU has been reduced to Chebyshev poly-
nomial form. A sufficient number of terms has been used to
_ provide a mean relative error of about one part in 107,

Each of the functions is implemented as a three-step process.
The first step involves range reduction. That is, the input ar-
gument to the function is transformed to fall within a range of
values for which the function can compute a valid resuit. For
-example, since functions tike sine and cosine are periodic for
multiples of #/2 radians, input arguments for thess functions
are converted 1o lie within the range of —m/2 to +m/2. Pro-
cessing of the range-reduced input argument according to the
appropriate Chebyshev expansion is done in the second step.

The thind step includes any necessary post processing of the

- result, such as sign correction in sine or cosine for a particular
quadrant. Range reduction. and post processing are unique 1o
sach of the functions, whi&e processing the Chebyshev ex-

" pansion is performed by an algorithm’ that is common o all
funcuons : . '

i
wwvw fastio.com

DERIVED FUNCTION ERROR PERFORMANCE

Since each of the derived functions is' an approximation of rrxs .
true function, resuits computed by the Am9511 are not a’W&‘}",
exact. in order to more comprehensively quantify the arr;
performance of the component, the following graphs havs
been prepared. Each function has been exscuted with »
statistically significant number of diverse data values, spar
ning the allowable input data range, and resulting errors hav«
been tabulated. Absolute errors (that is, the number of bits .
error) have been converted to relative errors according 10 1+
following equation:

Relative Error _ Absolute Error
-~ True Result

This conversion permits the error to be viewed with respect
the magnitude of the true result. This provides a more objes .
tive measurement of error performance since it directly trars :
lates to a measure of significant digits of algorithm accurac:

For example, if a given absolui. error is 0.001 and the trus
result is also 0.001, it is clear that the refative error Is equal .
1.0 (which implies that sven the first significant digit of the -
sult is wrong). However, if the same absolute error is cor -

- puted for a true resuit of 10000.0, then the first six significe:

digits of the resuit are correct (0.001/10000 = 0.0000001;.
Each of the following graphs was prepared to illustrate relatr

. algorithm error- as a function of input data range. Natur:~
i Logarithm is the only exception; since logarithms. are typic::
‘additive, absolute error is plotted for this function:

- Two graphs have not been included in the following figurs:

common logarithms and thé power function (XY). Coms~
logarithms are computed by muitiplication of the na
logarithm by the conversion factor 0.43429448 and the)
function is therefore the same as that far natural logarith:-
The power function is realized by combination of natura:
and exponential functions according to the aquation:

XY = eyLm:

The error for the powsr function is a combination of that -
the logarithm and exponential functions. Specifically, the

tive error for PWR is expressad as follows:

56

{REpwal. = |REgxp} + |X{AEL)|

where:)
REpwr = relative arror for power function
REgxe = relative error for exponential function
AE, y = ‘absolute error for natural logarithm
X = value of independent variable in X*
Notes:

1. Properties of Chebyshev polynomials taken from: Amsad b
ical Methods; Carnahan, Luther, Wikes; John Wiley & 3cir
1969, =
2. Derived function algonthms adapted from: Algorithms for o
Functions (I and 11); Numenscho Mathematic (1863); < o
Mifler, Woodger.

http://www.fastio.com/

" r @
‘Wt 1w
E [l o g wt -
0t |- wt =
L
w* 1 [N— n] o)
~10' T -t [d 1w 10° 10" —1e'® ~10°
DATA VALUES (RAANS)
MOS-008 | MO8-000
SINE COSINE
1 - :
q
| b ; ‘
. g - :
sl
w A .
~10'® -10° -197% 1077 gm0
DATA VALUES (RADIANG)
- MOS-010
TANGENT
W ws
A £
.1.‘.1. Z i [. N B w L : .l .‘ : N L L J-
R R L —10' P gm0 16°
- : DATA vALUES : B "DATA vALUES :
; . o 08311 . mMos012]
' - . /INVERSE SINE - _ Cl INVERSE COSINE .
X i i _:,:- ‘ - ,‘2» H
. ClibPDF -.w\\/\cu/‘fasno‘co'n’ S

http://www.fastio.com/

wtr

":7 -

w0? . L 1 ERE

]
T IR -1 S o 90 " "1
DATA VALUES :
- INVERSE TANGENT |
'n“ r o -
E w’
17—t . -
0% 0" C ot 1.'?
DATAVALUES |
. MOS-014
NATURAL LOG SQUARE ROOT |
ws
g
g
g |°—7 -
3
]
1w i 4 1] 1] I
- e e @ gm0 1° '

DATA VALUES

ClibPD

o

www . fastio.com

http://www.fastio.com/

COMMAND DESCRIP‘“ONS

- This section contalns detailed descripuons of the APU com-
mands. They aré an'anged in”alphabeticat order by command ,
mnemonic. In the: dsscnptions TOS means Ton Of Stack and

NOS means Next On: Stack.

All derived funcuons axcept Squaro Root uso Chebyshev
polynomial approximating algorithms. This approach is used -

to help minimize the intemal microprogram, to minimize the
maximum error values and to provide a relatively ‘even dis-
tribution of errors over the data range. The basic_arithmetic
operations are used by the derived functions 1o compute the
various Chebyshev terms. The basic operations may produce
error codes in the status. register as a resutt. '

Execution times are listed in terms of clock : cydos and may
be converted into time values by multiplying. by the clock
period used. For example, an execution time of 44 clock cy-

cles ‘when running at a 4MHz rate transiates to 11 micro-

. second& (44 x .25us = 11us). Variations in execution cycles
roﬂectthe data dependency of the aigorithms.

!nsomoperauonsexponemoverﬂoworunderﬂowmaybe
possible. When this occurs, the exponent retumed in the re-

sult wm be 128 greater or smalier than its true value.

Many of the functions use portions of the data stack as

" scratch storage during development of the restiits. Thus pre-
-~ vious values in those stack locations will be lost. Scratch loca-
" tions destroyed are listed in the command descriptions and
“ shown with the crossed-out locations in the Stack Contents
. After diagram.

- Figure 8'is a summary of ak the Am@511 commands. it-shows
i the- hex codes for each command, the mnemonic abbrevi-
-~ ation, a brief description and the execution time in clock cy-

cles. The commands are grouped by functional classes.

~. Figure 9 lists the command mnemonics in alphabetical order.

" ARCCOSINE °

ACOS
ASIN ARCSINE
ATAN - ARCTANGENT ,
CHSD - CHANGE SIGN DOUBLE-
CHSF . CHANGE SIGN FLOATING;
CHSS / CHANGE SIGN SINGLE '
cos © ‘COSINE = . - .
DADD - DOUBLE ADD

DoV DOUBLE DIVIDE
DMUL * DOUBLE MULTIPLY LOWER .-
DMUU DOUBLE MULTIPLY UPPER
DSUB . DOUBLE.SUBTRACT.
EXP ", EXPONENTIATION (e)
FADD FLOATING ADD -
FOIV FLOATING DIVIDE
FiIXD * FIX DOUBLE
FIXS. FIX SINGLE
FLTD FLOAT DOUBLE
FLTS FLOAT SINGLE
FMUL FLOATING MULTIPLY
Fsus

FLOATING SUBTRACT

N NATURAL LOGARITHM

"NOP - NO OPERATION
POPD POP STACK DOUBLE
POPF POP STACK FLOATING
POPS POP STACK SINGLE
PTOD PUSH STACK DOUBLE
PTOF - PUSH STACK FLOATING
PTOS PUSH STACK SINGLE
PUP PUSH

- PWR * -~ POWER (X")
SADD SINGLE ADD
SDIV - SINGLE DIVIDE-
SIN. ~ SINE
SMUL SINGLE MULTIPLY LOWER
SMUU SINGLE MULTIPLY UPPER
SQRT SQUARE ROOT
ssus SINGLE SUBTRACT
TAN TANGENT
XCHD " EXCHANGE OPERANDS DOUBLE
XCHF EXCHANGE OPERANDS FLOATING
XCHS EXCHANGE OPERANDS SINGLE

LOG COMMON LOGARITHM

g

ClibPDF -

Figure 9. Command Mnemonics in Alphabetical Order.

wiL fastioncom

http://www.fastio.com/

ACOS

32-BIT FLOATING-POINT INVERSE COSINE.

.- . 7 6.5 4 3 2 1 4
BinaryCoding: (st | 0 [oJo o[1 [1]0]

- HexCoding:: 86withse=1 ' '
o o 06withsr =0

' Execution Time: 6304 to 8284 clock cycles
Description:

- The 32-bit floanng polm opefand Aatthe TOS is replaced by the- -
* 32-bit floating-point inverse cosine of A. The result Ris a valua in

radians between 0 and =. Initial operands A, B, C and D are lost.

ACOS wilt accept all input data values within the range of ~1.0t0 - !
+1.0. Values outside this range will return an error code of 1100

in the status r agister.

Accuracy: ACOS exhibits a maximum relative eror of20x

10”7 over the valid input data range.
Status Affected: Sagn Zevo, Error Fmd

ATAN

32-BIT FLOATING-POINT

INVERSE TANGENT
;; .7 6 5 4 3 2 1 0
Binary Coding: {sc [0 o[o [o [1] BER
Hthodng. 87 with ar = 1
07 with sr = 0
Ex.cutlonﬂmo 4992m6538doekcydes
Description:

Tha 32-bit floating-point operand A at the TOS is repiaced by tho ‘
32-bit floating-point inverse tangent of A. The result R is a value in :
radians between — /2 and +/2. Initial operands A, C and D are
lost. Operand B is unchanged.
ATAN will accapt all input data vaiues mat canbe representad in’
the ficating point format.
Accuracy: ATAN exhibits a maximum relauve error of 3.0 X

, 1077 over the input data range.. :
‘Status Affected: Sign, Zero

STACK CONTENTS o STACK CONTENTS
BEFORE ' AFTER BEFORE AFTER
A TOS R A T0S "R
B B B
c c
D D :
o 32—} 32—l | = 32 f—— 32—

ASIN

32-;B|T FLOATING-POINT INVERSE SINE
6. 5 4

: 7 3 2 1 o0
BlmryCodlng'LsrlO|0[0‘011J0]1l
HoxCodlng 85 with sr = {

05 with sr = 0

Execution Time; 6230 to 7938 clock cycles

Description: |
The 32-bit ﬂoatmg-ponm operand A at the TOS is replaced by the :

32-bit floating-point inverse sine of A. The result R is a value in
radians between -wlZ -and +7/2. Initial operands A, 8, Cand D
are lost. -

ASIN will accept alt input data values within the range of —1.0to
+1.0. Values outside this range will return an error codo of 1100
in the status register. '

Accuracy: ASIN exhibits a maximum reiative error of 4.0 x

CHSD

32-BIT FIXED-POINT SIGN CHANGE.

7 86 5 4 3 2 1 0
BlmryCodlng:lsrlQ[1lllol1 !0{01,
Hex Coding: B4 with st = 1)

34 with sr =

Execution Tltm 26 to 28 ctock cycles

Description:

The 32-bit ﬁxed—pomt two's complement integer operand A at

the TOS is subtracted from zero. The result R raplaces A at

the TOS. Other entries in the stack are not disturbed.

Overflow status will be set and the TOS will be retumed un-

changed when A is input as the most: hegative value possible
- in the format since no positive equcvalem axists,

Status Atffected: Sign, Zero, Error Fieid (overfiow)

. 1077 over the valid input data range.
Status Attected: Sign, Zero, Error Field
STACK CONTENTS STACK WNTENTS.
BEFORE . AFTER BEFORE) AFTER
A TOS "R A TOS R
B B B
c c c
D - _ D D
| 32 i f———2a2 b1} a2 { | 32 {

ClibPDF - www fastio.com

510

http://www.fastio.com/

" CHSF

| 32-BIT FLOATING-POINT SIGN CHANGE

F 7 6 5 4 3 2 1 0

Binary Codlng:f st l 0 l 0 [1 l

Hex:Coding: 95 with sr = 1

! 15 withsr =0
Execution Time: 16 to 20 clock cycles
Description:

The sign of the mantrssa of the az-mt floating-point operand A at
the TOS is inverted. The result R replaces A at the TOS. Other
stack entries are unchanged.

If Ais input as zero (mantissa MSB 0), no change is made.
Status Affected: Sign, Zero

STACK CONTENTS
BEFORE’ o AFTER
A - T0§ —= "R
8 ' 8
c o T c
o | .. D
! a2 oy 32

o 1 Tol]

- Hex Coding: 83 withsr =1

32-BIT FLOATING-POINT COSINE
7 6 5 4 3 2 t 0
Binary Coding: [sr J 0 [0 JoJo o[1] 1]

03 withsr =0
Execution Time: 3840 to 4878 clock cycles
Description: |
The 32-bit ﬂoatmg point operand A at the TOS is repiaced by
R, the 32-bit ﬂpatmg point cosine of A. A is assumed to be in
radians. Opergnds A, C and D are lost. B is unchanged.
The COS mmf:tion can accept any input data vaiue that can
be represented in the data format. All input values are range
reduced to fall within an interval of —#/2 to +n/2 radians. -
Accuracy: COS exhibits a maximum relative error of 5.0 x
1077 for all input data valuss in the range of -2n
ta +27 radians.
Status Affected: Sign, Zero

STACK CONTENTS

16-BIT FIXED-POINT SIGN CHANGE
-7 65 4. 3 2 1+ 0
BInaryCedinq:[srl1]1"1‘6}1!0101

Hex Coding: F4 withsr =1

74 withsr = 0
Execution Time: 22 to 24 ciock cycles
Description: ‘

16-bit fixed-point two's complement integer operand A atthe TOS
is subtracted from zero. The result R replaces A at the TOS. All
other operands are unchanged. ‘

Overflow status will be set and the TOS will be retumed un-
changed wheri A is input as the most negative value possible in
the format since no positive equivalent exists.

Status Atfected: Sign, Zero, Overflow

STACK CONTENTS
BEFORE ' , AFTER
A —TOS R
B | B
"c. c
0 D
E E
F F
G G
—te—d 0 e

ClibPDF - wvwwy fm i0.com

BEFORE AFTER
A TS —| R
B ‘ B
C
a Dj .
b 32—’ - ——32

DADD

32-BIT FIXED-POINT ADD

B!naryCoding;[sriOli]Ol1[1{0‘0‘1

Hex Coding: AC withsr =
. 2Cwithsr =0
Execution Time: 20 to 22 clock cydes

Description:

The 32-bit fixed-poirt two's complement integer operand A atthe
TOS is added to the 32-bit fixed-point two's complement intager
operand B at the NOS. The resuit R replaces operand B and the
Stack is moved up so that R occupies the TOS. Operand Bis lost.
Operands A, C and D are unchanged. if the addition generates a
carry it is reported in the status register.

If the result is too large to be representsd by the data format, the
least significant 32 bits of the result are returned and overﬂow
status is reported.

Status Aﬂec‘ed Sign, Zero, Carry, Error: Field:

STACK CONTENTS
BEFORE AFTER.

A g TOS — R

B " C .
o A

http://www.fastio.com/

DD“/

32 BIT FIXED-POINT DWIDE

Exocuuon Tlmo 196 to 210 clock cycles when A £0
: mdockcycteswhenA = 0.

 Description:
The 32-bit ﬁxed-pomt twos oomplement mteger operand 8 at

NOS is divided. by the 32-bit fixed- -point two’s complement in-

teger operand A at the TOS. The 32-bit integer quotient R re-

- placés B and the stack is moved up so that R' occupies the

. TOS. No remainder is generated. Operands A and B are lost.

' . Operands C and D are unchanged.

~ WA s zero, R is set equal.16 B and the dlvlde by-zaro arror
. status will be repoﬂed If sither A or B is the most negative
- value possible in_thé format, R will be meanmgless and the
", overflow ervor status will be rsported. .
- Status Afhchd S;gn Zaro, Error Field.:

BEFORE : » STACK CONTENTs : AFTER
A . ff-TOS-‘-H R
B, G
c D:
D
| a2 ;..___32_____—_

- DMUL |
"~ 32-BIT FIXED-POINT MULTIPLY; LOWER
7 8 5 43 2iq

@inary Coding: (s [0] 1] 0 | 1 g 3 ; 1] q,

Hex Coding: AE with 8r = 1 .

. 2E with ér = 0
Execution Time: 194m210dockcyc43s
Description:

m&uMWmMSwﬂ\pbmmtegaope:amAatm'~
TOSnswuphedbymaz-bnﬁxed-pmmtwoscompbnmtn»

teger operand B at the NOS: The 32-bit least significant half of the
produ:theplaoesBandmestad(smovedupsoMRoo-
5.7 cupies the. TOS. The most significant half of the produdt is lost.
'»OperandsAandBarelostOperandsCandDavewwhamed

- be represented in the format, that valye is fetumed as R and
the overflow status is set.
Smus Affected: Sign, Zero, Overfiow

The overfiow status bit is set if the discarded Gpper half was "
non-zero. If sither A or.B:is the most negative value. that can--

'DMUU

32 BIT F&XED POINT MULTIPLY, UPPER

7 8 5 4 3 2
1

"*‘as.,.'..ycw;..,,:bflog,g 5«011[1[07

" Hex Coding: B6 with st = 1
~‘ : I8 with sr = 0

' viExocuuonTlm 182 to 218 clock cycies

The 32‘bn ﬁxed-pount two's complement integer operand A at
the- TOS is multiplied by the 32-bit fixed-point two's comple-
ment’ lnteger operand B at the NOS. The 32-bit most signifi-
cant half ofthe product R repiaces B and the stack is moved
up so that A occupies the TOS. The least significant half of
the prnduct is lost. Operands A and B are lost. Operands C
and:Dare unchanged.

WAord _was the most negative value possible in the format,

overflow status is set and R is meaningless.

'sutus Afhctod Sign, Zero, Overflow

BEFoRE STACK CONTENTS AFTER
CUA L e—TO§ e R
B c
c 0
"D -
e 32— f 32

DSUB

32-BIT FIXED-POINT SUBTRACT

7 8 5 4 3 2 1 o
Btmmwlng:br{o[1].o[1[1[o]‘I
Hex Coding: - AD with sr = 1

2D with s = 0

" Execution Time: 38 10 40 clock cycles

Description:
The 32-bit fixed-point two's complement operand A at the
TOS is subtracted’ from the 32-bit fixed-point two's comple-

. ment operand B at the NOS. The difference R replaces
operand B and the stack is moved | up so that A occupies the
- TOS. Operand B is. lost. Operands A, C and D are un-

changed.

If the subtraction generates a barrow it is reported in the carry - -

status bit. If A is the most negative value that can be rep-
resented in the format the overfiow status is set. If the result

* cannot be represented in the data format range, the overflow

bit is set and the 32 ieast significant bits of the result are re-

 BEFORE STACK CONTENTS AFTER
A —T0S R
8 - c.
c Lk)
——a2——=] oy Y ——
MV fasl\(): com .

CliEPD

512

- turned as R.
Status Atfectsd: Sign, Zero, Carry, Overflow
) BEFORE STACK CONTENTS AFTER
A TOS A
B C
- C D
"D A
> 32 =] ' } a2

g S ryreb

http://www.fastio.com/

: 32-85‘% FLOATING-POINT ¢

5 3

o 7 6 . 2 1 o
Binary Coding: | s [0 o[o [1o [1] 0]
Hex Coding: 8A with st=1

- QA withsr=0-

Execution Time: 3794 10 4878 clock cycles for IAl < 1.0 x 25
34 clock 'cycles for 1Al > 1.0 x 25-
Description:

The base of natural Ioganthms e, is raised to an exponent value
specified by the 32-bit floating-point operand A at the TOS. The
result Rof e® replaces A. Operands A, C and D are lost Operand
B is unchanged.

EXP accepts alt mpdt data values within the range of 1.0x 2+s

to +1.0x 2%, input values outside this range will retirn a code of

1100 in the error field of the status register. ;

Accuracy: EXP exhibits a maximum relative error of 5.0 x
1077 over the valid input data range. :

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

FDIV

32-8IT FLOATING-POINT DIVIDE

-7 6 5 4 3 2 1 0
Binary Coding: | s | 0 [0 [1[0 o] 1] 1]
Hex Coding: 93 with sr = 1

13 withsr = 0

Execution Time: 154 10 184 clock cycles for A # 0
. 22 clock cycles for A = 0
Description:

32-bit floating-point operand B at NOS is divided by 32-bit
floating-point operand A at the TOS. The resuit R replaces 8 and
the stack is moved up so that R occupies the TOS. Operands A
and B are tost. Operands C and D are. unchanged.

- Itoperand A is zero, R is set equal to B and the dmde—by zero

error is reported in the status register. Exponent overflow or
underfiow is reported in the status register, in which case the

. mantissa portion of the result is correct and the exponent portion

is offset by 128.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A —T0S A
B 8
= ’
o T -
L———aa-—-—; o 22—

FADD

32-BIT FLOATING-POINT ADD

o 7 6 5 4 3 2 1 90

Binary Coding: | sr [0 [0 [1 [o0] o0 0] 0]

Hex Coding: 90 withsr = t ; '
10 with st = 0 -

Execution Time: 54:0368dockcyc!ssfcrA#0
24 clock cycles for A = 0

Description:

32-bit floating-point operand A at the TOS is added to 32 bn\
floating-point operand B at the NOS. The resuit R raplaces Band

the stack is moved up so that R occupies the TOS. Operands A

and B are lost. Operands C and D are unchanged.
Exponent alignment before the addition and normalization of the

result accounts for the variation in exscution time. Exponent 1

overfiow and underflow are reported in the status ragister; in

which case the mannssa is correct and the exponent is offsatby .

BEFORE AFTER
‘A |t TOS ——ief]
B ' c
[D
D
} 32 - — 32 -
32-BIT FLOATING-POINT TO
32-BIT FIXED-POINT CONVERSION
, 7 6 5 4 3 2
Binary Coding: [st [0 [o [+ [1 [1 1] 0|
Hex Coding: 9E with sr = 1
1E withsr = 0
Execution Time: 90 to 336 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
32-bit fixed-point two's complement integer. The result R re-
places A. Operands A and D are lost. Operands 8 and C are

. unchanged.

i the integer portion of A is. targer than 31 bits when con-
~ verted, the overflow status will be set and A will not be
" changed. Operand D, however, will still be fost.

128, - Status Aﬂectad Sign, Zero Ovedlow
Status Affectsd: Sogn. Zero, Error Field .
BEFoRE STACK CONTENTS . AFTER _ BEFORE ~ STACKCONTENTS = 1pq
A T0S L A ~——TOS =] R
8 ' c B ‘ B
c . D S C -G .
! -32 i P I -32- { ! 32—
' ClipPDF-- i fastio.com - ' clsay ;

http://www.fastio.com/

ClibPD

32-BIT FLOATING-POINT TO
16-BIT FIXED-POINT CONVERSION

7 6 5 4 3 1.0

BlnatyCodlng[sr]O‘O]i[[lllj’]

Hu Coding: 9F withsr. = 1 o
1F with st = 0

Exoouuon Time: 90 to 214clockcycles

Description:

_ 32-bit floating-point cperand A at the TOS is oonvertsd toa
16-bit fixed-point two's complement integer. The result R re-

piaces the lower hait of A and the stack is moved up by two

bytes so that R occupies the TOS. Operands A and D are
lost. Operands B and C are unchanged, but appear as upper

{u) and lower (i) haives on lho 16-bit wide stack it they are. -

32-bit operands.

I the integer portion of A is larger than 15 bjts when con-
verted, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost. -

Status Atfected: Sign, Zero, qurf!ow

BEFORE °VACK CONTENTS ‘AFTER
LA ~TOS A
. B Bu
‘c 8l
D Cu
- R— ct
Fe— 16 —=={

FLTD

32-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

65 4 1
, BlnaryCodlng.LsrlO{O[I [1]1]orj
) Ho:CodIng- Cwithsr=1: -
1Cwithsr=0.
ExecutlonTlmo 56m342c!ockcycies
Description: -

32-bit fixed-point two's complament integer operand Aatthe TOS
is converted to a 32-bit floating-point number. The result R re-

places A atthe TOS. Operands A and Darelost.Operands Band -

C are unchanged.
Status Affected: Sign, Zsro

STACK CONTENTS

16-BIT FIXED-POINT TO™ -
32-8IT FLOATING-POINT QONVERSION

7 6 5 4 ‘3 2 4

: o
Elnanodng;[’y‘{ Q { o l \'1'1 I 1‘.{1‘0 ! 17]
‘Hex Coding: - 90 with st = 1 o S

A 10 with sr = 0

Exocutlon Time:: 62m156 clock cydes

Description;

16-bit fixed-point two's. oomplement mteger A at the TOS is
converted to a 32-bit fioating-point number. The fower half of the
result R (RI} replaces A, the upper haif (Ru) replaces H and the
stack is moved down so that Ru occup'ies the TOS. Operands A,
F, G and H are lost. Operands B, C, D and E are unchanged.
Status Aﬂocud Sign, Zero

'STACK CONTENTS

BEFORE AFTER

A 108 Ru

8 RI

c 8

0 c

E D

F E

G i

H o

b 16— (P —

FMUL
32-BIT FLOATING-POINT
MULTIPLY

-

Binary Coding: | st [0 [0 [1 oo 10|

Hox Coding: ;| 92 with st = 1

i 12 withsr = 0
Execution Tlmo 146 {0 168 clock cycies
Description:

32-bit floating-point Qperand A at the TOS is multiplied by the
- 32-bit floating-point operand B at the NOS. The normalized resutt’
" R replaces B and the stack is moved up so that R occupiés the |
TOS. Operands A and B are lost. Operands C and D are un-|
changed.

- Exponent overflow or underﬂow is reported in the status register,
in which case the mantissa portion of the result is correct and the
axponent portion is offset by 128.

Status Atfected: Sign, Zaro, Error Field

STACK CONTENTS

BEFORE AFTER BEFORE AFTER
A TOS- R A 108 R
B 8 B . c
C c c - D
D : D - ‘
! a2 o 32 } 32———e] ! 32

www.fastio.com

514

http://www.fastio.com/

-~

ia_lmi-y(:odlng:l_sr! 0 1 0 [1 I 0 ! OY

FSUB

32-BIT FLOATING-POINT SUBTRACTION
' 7 8 5 4 3 2 1

ol +]

Hex Coding: 91 with sr = 1

HHwithsr=0

Execution Time: 70 to 370 clock cycles for A # 0
26 clock cycies for A = 0

Description:

32-bit floating-point operand A at the TOS is: subtracted from

32-bit floating-point operand B at the NOS. The normalized
difference R replaces B and the stack is moved up so that R

occupies the TOS. Operands A and B are lost. Operands C .

and D are unchanged.

Exponent alignment before the subtraction and normalization
of the result account for the variation in execution time.
Exponent overflow or underflow is reported in the status regis-
ter in which case the mantissa portion of the result is correct
and the exponent portion is offset by 128.

Status Affected: Sign, Zero, Error Figld (overfiow)

BEFORE - STACK CONTENTS rreq
A ——TOS§ —= R
8 c
c 3
D
~ 32~ 32

1 =
32-BIT FLOATING-POINT

COMMON LOGARITHM
7 8 5 4 3 2 1

Binary Coding: [sr [0 [0] o | 1{\\0’ [o]ol]

: Hex Coding: - 88 with sr ='1

08 withsr = 0

: Exocuﬁon Time: 4474 to 7132 clock cycles for A >0

20 clock cycles for A < 0
Description:
The 32-bit fioating-point operand A at the TOS is replaced by R,
the 32-bit fioating-point common logarithm (base 10) of A.
Operands A, C and D are lost. Operand B is unchanged.
The LOG function accepts any positive input data value that can
be represented by the data format. If LOG of a non-pos'tive vaiue
is attempted an error status of 0100 is returned. .

; Accuracy: LOG exhibits a maximum absofute amorof2.0x 10’7
for the input range from 0.1 to 10, and a maximum

relative error of 2.0 x 1077 for posmve values less
than 0.1 or greater than 10.

. Status Affectsd: Sign, Zero, Error Field

'BEFORE ~ STACK.CONTENTS arrR
A Je—ros— R
8 . il B
c ' L
‘ D
e A i
D P 32

;QHDPD:L- AWV fm lorconm

. 32-BIT FLOAT]NG POINT
NATURAL LOGAH!THM

7 6 5 4 3 3 1 0o

Btnary Codlng 1

loJofJo[1Tafolr]
chCod!ng 89withsr =1 S
09 with sr = 0 ",

Exlcuﬂon T!mo 4298 to 6956 clock cycles for A>0
. 20 clock cycfes for A< 0
Description: :
The 32-bit floating-point operand A at the TOS -s rep!aced by
R, the 32-bit floating-paint' natural logarithm (base a) of A,
Operands A, C and D ars lost, Operand B is unchanged. ¢
The LN function accepts ail positive input data values that can.
be represented by. the data format. if LN of a non-positive:
number is attempted an emor status.of 0100 is returned. _
Accuracy: LN exhibits a maximurm absolute error of 2 x 10~7
~ for the input range from e ~1to'e, and a maximum
relative error ot 2.0'x.1077 for pos:uve values less
.thane ' or greater than e.

Status Af\‘octod ‘Sign, Zero. Error F ald

" AFTER

: BEFOFIE‘ STA{:K comsu-rs
o A -TOS- . R
8 . S B
(o o
D
! 3 ; 32 |
OPERATION

Binry Codng: [[0 [0 [0 [0 [0 [0] 0]

Hex Coding: 80 with s7 = 1

OO0 withsr =0
Exocullon Time: 4 clock cycles
Dcscriptlon- .

1

The NOP command performs no intérnal data manipulations. It:
may be used to set or clear the seérvice request interface ling;
without changmg the contents of the stack.

Status Aﬂoctod. The status byta is cleared to all zerces.

http://www.fastio.com/

v C\m!)lf

" POPD

: 32-BiT-
| . STACKPOP ‘_
P 2 1 0
Binary Coding: [t | 0 | 1 | 1 { lololol]
mxvcéam'g: _ BBwithsr =1 ' 7
) < 3B withrst = 0
Execution Time: 12 clock cycles
Description:

The 32-bit stack is moved up so thal the old NOS becomes. !ne
newTOS. The pravious TOS rotates to the bottom of the stack. Al

l -operand values are unchanged POPD and.POPF execute the .

same operation.
Status Atfected; Sign, Zaro

‘ - STACK CONTENTS v
* BEFORE I _ AFTER '
A " fe—TOS§- B
8 L ‘ : (o]
‘C T D
I- a2 -t ' I 32- }
32-8BiT :
STACK POP
7 6 5 4 o
Binary Coding: | sr | 0 | oj 1] 1] 0]'0[}
Hex Coding: 98 with sr = .
18 with sr = 0 .
Execution Time: 12dockcycbs
Deacription:

The 32-bit stack is moved up 50 that the oid NOS becomes the:_-‘f' i
* new TOS. The old TOS rotates to the botiom of the stack. Al |
operand values are unchanged POPF and POPD execute the

same operation.
Status Atfected: Sign, Zero

" STACK CONTENTS

" Hex Coding:

POPS

- 16-BIT
STACK POP
. 7 6 5 4 3 2 t Q
Binary Coding: | st [t [1 [1[1[o]o o]
' F8withsr = 1
78 with sr = 0

 Execution Time: 10 clock cycles

Description:

. The 16-bit stack is moved up so that the old NOS becomes the
" new TOS. The previous TOS rotates to the bottom ot the stack. Al
. operand vaiues are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS |
BEFORE

AFTER -

>,

TOS

w

IO ImmOiO|W
PITI@IMIMiO|O

!
i
|
i

PTOD

PUSH 32-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0

’Blchoding;[sr{'0}1l1]0[1|1|1I
Hex Coding:
-Exocuﬂobﬂm 20 clock cycles

B7 with-sr = 1
37 withsr =0

Description:

. The 32-bit stack is moved down and the prevnous TOS is
- copied nto the new TOS location. Operand D is lost. All other

operand values are unchanged. PTOD and PTOF execute the
. same operation.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE , _ AFTER BEFORE - AFTER
A ——TOS = i B A ~TOS A
y: : [o 8. v A
c D c / B
I | A D . C
| 32 i : -32 —=i | | -32 { | 32 {
www . fastio.com - ; 5%16 :

http://www.fastio.com/

PTOF

PUSH 32-8IT

TOS ONTO STACK
‘ 7.6 5 4 2
Blna’ryCoglng'lsr“ V] [0 I 1 l 0 { 1 [1 I 11
Hex Codingt ~ 97 with sr = 1

17 withsr =0
Exocution Time: 20 clock cycles
Description: '

‘The 32-bit sfack is moved down and the previous TOS isoopied

into tf}e new TOS location. Operand D is lost. All other operand

‘values are unchanged. PTOF and PTOD execute the same op-

aration: =
Status Affected: Sign, Zero

STACK CONTENTS)

PUPI

. PUSH 32-BIT
- FLOATING-POINT 77

N 7.6 5 4. 3 2 1 o0
BlmryCodlng:[sr}OlO'l1l1}0{$f'ﬂ

Hex Coding: = 9A with st = 1
) 1A withsr = 0

- Execution Time: 16 clock cycles

Description:

The 32-bit stack is moved down so that the previous TOS oc-
cupies the new NOS location. 32-bit floating-point constant = is
entered into the new TOS location, Operand Dislost. Operands
A, B and C are unchanged.

Status Affected: Sign, Zero

" BEFORE . AFTER
A . — TOS A
8. A
c , B
"o | c
—— ——32
PUSH 16-BIT
TOS ONTO STACK

BlnlryCodlﬁg’:[s;Tt EEEEERE }1] 1]

Hex Coding: - F7 with sr = 1

: . TTwithsr=0
Execution Time: 16 clock cycles
Description:

. The 18-bit stack is moved down and the pravious TOS is copled
© into the new. TOS location. Operand H is lost and all other

- operand values are unchanged.-
Status Affected: Sign, Zero
' STACK CONTENTS
BEFORE | ' AFTER
A e T0S A
8| A
C . B
o c
CE D
F E
G, F
H | G

1
i

vfastio.com

. STACK CONTENTS
BEFORE - , AFTER
A TOS ”
8 A
. C 8
D C

http://www.fastio.com/

32-8IT ;
- FLOATING-POINT XY

7 & 5 4.3 2 1.0

asnarycw;ng:[sr[o[o] 0] 1 {'vo[a’ulrw

Hex Coding: 8B withsr =1

0B withsr = Q
Execution Time: 8290 to 12032 dock cycles
Description:

32-bit floating-point operand B at the NOS is raised to !he power

specified by the 32-bit floating-point operand A at the TOS. The '
resuit A of B* replaces B and the stack is moved up so that R.

occupies the. TOS. Operands A, B, and D are lost. Operand C is
unchanged.

The PWR funcubn accepts all input data values that can be .

represented in the data format for operand A and all positive
values for operand B. it operand B is non-positive an ersor status
of 0100 will be returned. The EXP and LN functions are used to
implement PWR using the relationship B* = EXP [A(LN B)).
Thus if the term [A(LN B)] is outside the range of 1.0 x2%3 1o
+1.0x2%% an error status of 1100 will be retumed. Underﬂow and
overflow conditions can occur.

Accuracy: The error performance for PWR is a function of
the LN and EXP performance as expressed by:

(Relative Error)pwrl= kRelative Error)ExpﬂA(Abwutl.r ‘

Eﬂ’OI’)LN'
The maximum relative error for PWR occurs when

A'is at its maximum value while {A(LN BJ)] is near

1.0 x 25 and the EXP error is also at its maxi-
mum. For most practical applications. the relative
error for PWR will be less than 7.0 x 10~

Status Affected: Sign, Zero, Error Field

STACK CONTENTS. .-
BEFORE , . AFTER
A 108 R
8 c
c
D l
} a2 | } 32

ClibPD wivw - fastio.com

518 o ’ i

SADD

- 16-BIT
FIXED-PO!NT ADD- .
: 7.8 5 4 3 2 t.0
. Binary Codlng:'[sr l 1 [1 i: 0 I
H.xCodlng ECwithsr =1
oo T - 8C withise = 0
- Exocuﬂon'ﬂm 1610 18 clack cycles
" Deseription:. :
" 16-bit fixed-point two's complement nnteger operand A at the

operand B at the NOS. The result R replaces B and the stack
>, is_moved-up so that R océupies the TOS. Operand B |s lost.
* All other operands are unchanged

if the addition generates. a carry bit it is reported i the status

- ter and the 16 least significant bits of the result are retumetl
e Sumn Affected: Srgn Zero Carry. Error Field-

'STACK CONTENTS :

BEFORE ' AFTER

A R

3o 8 - " [of
{ ¢ : D
I R . E
A E F
1F G
e “H
i H 1 a

f— 16— b 16—

-TOS is added 1o 16-bit fixed-point two's compiement: integer-. -

register. It an overfiow occurs it is reported in the Stalus regis- -

http://www.fastio.com/

sDv

- 18BIT -
- FIXED-POINT DIVIDE
7. 6 5 4 3 2 1 o
Binary Coding: | sr | AEEEEERERE [1]
Hex Coding: EF withsr =1 . ' :
6F withsr = 0

Execution Time: .84 to 94 clock cycles for A # g
. ¥4 clock cycles for A = 0

Description: :
16-bit fixed-point; two's complement integer operand B at the

operand A at the, TOS. The 16-bit integer quotient R replaces B

remainder is generated. Operands A and
3 operands are unchanged. ‘
it A'is zero, R will be set equal to B and the divide-by-zero arror
status will be reported. :

Status Attected: Sign, Zero, Error Field

B are lost. Ail other

~ STACKCONTENTS

BEFORE o ‘AFTER -

A TOS "R

B c

- ¢ D

D 3

E F

F G

G H

H
16— b 16 el
. Cl rzﬂ?l), <AV, fasti

NOS is divided uy 16-bit fixed-point two's complement integer

and the stack is moved up so that'R occupies the TOS. No |

.

§19 -

SIN

o 32-BIT
FLOATING-POINT SINE
, 7 6 5 4 3 2 1 o
Binary Coding: | s [0 [0 [0] 0] o [1] o]
Hex Codlng: 82 with sr = 1)
Lo 02 withsr =0
Execution Time: 37596 to 4808 clock cycles for Al > 2~ '2
B radians)
) 30 clock cycles for Il s 272 radians
Description: :

The 32-bit floating-point operand A at the TOS is replaced by
R, the 32-bit floating-point sine of A. A is assumed tp be in

- radians. Operands A, C;and D are lost. Operand B is un-
‘changed.) ')

The SIN function will acdept any input data value that can be

rapresented by the data format. Afl input vaiues are range re-

duced to fall within the interval - /2 to +#/2 radians.

Accqracy: SIN exhibits a maximum relative error of 5.0 x
1077 for input values in the range of -2 to +21r
radians, :

Status AHected: Sign, Zero

© STACK CONTENTS -

BEFORE AFTER
A o — TOS — i)
B ’ B
c .
D :
- 32 - b 30—

http://www.fastio.com/

CMQPD

*.16-BIT FIXED-POINT
. MULTIPLY, LOWER
©7 .7 e 5 4 3 2 1 0
Binary Coding: [sr [1 | 1 [o{1[1[1]0]
Hex Coding:: EE with sr = 1
P BEwithsr =0
Execution. Timd: 84 10 94 clock cycles
Description:
16-Dbit fixed-pointtwo seomplement integer operand A atthe TOS
is multiplied by the 1s-bu fixed-point two's complement integer
operand B.at the NO$. The 16-bit least significant haif of the
product R raplaces B and the stack is moved up so that R
occupies the TOS. The most significant hatf of the product is lost.
Operands A and B are lost. All other operands are unchanged.

 The overflow status bit is set if the discarded upper half was
", non-zero. if either:A or B is the most negative value that can be
represented in me format, that value is returned as R and the.

overflow status is set.
Status Atfected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE : AFTER
‘A" |e——T0s A
B ’ c
c o
‘D E
E F
F G
G H
H .

fo—18—

wvwy fastiolcom

SMUU

16-BIT FIXED-POINT.
MULTIPLY, UPPER

7 6 5§ 4 3 2 1 0

Hex Coding:. F6 with sr = 1

' 76 with st. = Q
Execution Time: 80 to 98 clock cycles
Description:

16-bit fixed-point twa's complement integer operand A at the
TOS is muitiplied by the 16-bit fixed-point two's compiement
integer operand B at the NOS. The 16-bit most significant half
of the product R reptaces B and the stack is moved up so that
R occupies the TOS. . The least significant half of the product
is lost. Operands'A and B are tost. All other operands are un-
changed.

if either A or B is the most negatwe value that can be rep-
resented in the format, that value is returned as R and the
overflow status is.set. -

Status Attected: Sign, Zero, Error Field”

" STACK CONTENTS
BEFORE -

AFTER

A - TOS — R

8 ‘ c

c D

D E

£ F

F a

G H

H . .
fo— 16—t o 16—l |

520

BimryCodlng:{sr- l»17 ‘ 1 l 1] 0 [1 [1 I O-Jb

http://www.fastio.com/

|

“ITthPD

SQRT
32-BIT FLOATING-POINT SQUARE BOOT

7 & 5 4 3 2 1 0
BinaryCoding:[srlOIO‘O‘Q[O‘O]11

Hex Coding: = 81 with st =

01 withsr = Q
Execution Time: 782 to 870 clock cycles
Description:

32-bit fioating-point operand A at the TOS is replaced by R, the
32-bit fioating-point square root of A, Operands A and D are lost.
Operands B and C are not changed.

SQRT will accept any non-negative input data value that can be
represented by the data format. If A is negative an error code of

" 0100 will be returned in the status register.

Status Atfected: Sign, Zero, Error Field

BEFORE -~ STACK CONTENTS AFTER
A TOS R
8 : » B
c c
D
32-——4 32 .

SSUB

16-an’ FlXED-POlNT SUBTRACT

‘7 & 5 4 3 2 1.0

IE‘B"lm/lerodmg:‘er‘}‘lol‘l»‘io!1x

Hex Coding: ED with sr = 1

6D withsr = 0
Execution Time: 30 to 32 clock cycles
Description:

16-bit fixed-point two's complement integer operand A at the
TOS is subtracted from 16-bit fixed-point two's complement in-
teger operand B at the NOS. The result R replaces B and the
stack is moved up so that R occupies the TOS. Operand B xs
fost. All other operands are unchanged.

if the subtraction generates a borrow it is reported in the carry
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. if the result
cannot be represented in the format range, the overflow
status:is set and the 16 least sngmﬂcant bits of the result are

- returned as R.

Sta(us Atfected: Sign, Zero, Carry, Error Field

. 'BEFORE ~ STACK CONTENTS. AFTER
"A je——T0§———= R
B o] H
c)
o E
" E F
F) G
G- TH
TH oL ST A
ISP 15—

wwvw fastio.com

v e LR

TAN

32-BIT FLOATING-POINT TANGENT

7 6 5 4 3 2 1 0
BinaryCoding:(sr i 0 ‘, Q g 0 f 0 I 1] 0 X 'O_J
Hex Coding: B84 withsr =1)

04 with st = 0
Execution Time: 4894 to 5886 clock cycies for Al > 2712
radians

30 clock cycles for IAl < 2 radians .
Description:’

The 32-bit floating-point 0perand A at the TOS is replaced by
the 32-bit floating-point tangent of A. Operand. A is assumed
to be in radians. A. C and D are lost. B is unchanged.
The TAN function will accept any input data value that can be
represented in the data format. All input data values are
range-reduced to fail within - /4 to +n/4 radians. TAN is un-
bounded for input values near odd muitiples. of w/2 and in
such cases the overflow bit is set in the status register. For
angles smaller than 27 '? radians, TAN.returns A as the tan-
gent of A.
Accuracy: TAN exhibits a maximum relative error of 5.0 x
1077 for input data values in the range of ~2r to
+2 radians except for data values near odd mui-
tiptes of w/2.-

Slatus Affected: Sign, Zero, Error Field (overﬂow)

BEF_OREA'Q STACK CONTENTS AFTER
i 708 R
Ty
o ‘
f 32 i e 32 e}

EXCHANGE ‘32-BIT STACK OPERANDS
7 6 5 4 3 2 1 0
Blnaerodlhg:i;IO 51 1 ‘ lO l 0]'1_]

Hex Coding: = B9 withisr = 1°

: 39 with'sr = 0
Execution Time: 26 ciock cycles
Description:

32-bit operand A at the TOS and 32-b|(operand B at the NOS
are exchariged. After execution, B is at'the TOS and A'ls at
the NOS.. All operands are unchanged XCHD and XCHF
execute the same operation.
Status Aﬂected Sign,: Zero

BEF@RE STACK CONTENTS AFTER
A . j=—TOS 8 |
B A
c . | ' c
I —

http://www.fastio.com/

ClibPDF -

XCHF

" EXCHANGE 32-BIT
* STACK OPERANDS

7 6 5 -4 3 2 1 0

BinaryCodmg[srlO[0‘1{1}0!0['\]'-;

Hex Coding: . 39 with sr- =1

) - 19 withsr =0 .
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32- bst operand B at the NOS
are exchanged. After sxecution, B is'at the TOS and A is at

the NOS. All operands are unchanged XCHD and XCHF RN

execute the same operation.
Status Affected: Sign, Zero

STACK CONTENTS
BEFORE AFTER
A TOS: 8
B ! A
c C
D D
} 32 - ! 32- |

wyw fastio.com

5-22-

XCHS

EXCHANGE 16-BIT
STACK OPERANDS

7.6 5 4 3 2 1

. S 0
~BlnaryCoding-|srl. {,1 } 1] 1 {o fofﬂ
Hox Coding. F9 with st =1
T 79withst =0
Exccuuon Time: 18 clock cyclec

Description:

" " 16-bitoperand A at: the TOS and 16 bit operand B at the NOS
--are exchanged. After execulion, B is at the TOS and A is at

the NOS. All operand values are unchanged

- Status Aﬂoctod Sign, Zero:

' STACK CONTENTS
BEFORE AFTER
A TOS B
8 A
c c
B D
_E E
F ¢
G G
H H
f— 16— f— 16—

http://www.fastio.com/

	./am9511_01.tif
	./am9511_02.tif
	./am9511_03.tif
	./am9511_04.tif
	./am9511_05.tif
	./am9511_06.tif
	./am9511_07.tif
	./am9511_08.tif
	./am9511_09.tif
	./am9511_10.tif
	./am9511_11.tif
	./am9511_12.tif
	./am9511_13.tif
	./am9511_14.tif
	./am9511_15.tif
	./am9511_16.tif
	./am9511_17.tif
	./am9511_18.tif
	./am9511_19.tif
	./am9511_20.tif
	./am9511_21.tif
	./am9511_22.tif
	./am9511_23.tif
	./am9511_24.tif
	./am9511_25.tif
	./am9511_26.tif
	./am9511_27.tif
	./am9511_28.tif
	./am9511_29.tif
	./am9511_30.tif
	./am9511_31.tif

